	ENSV Inspect	tion Transmittal S	Summary R	Report
Media: AIR	Inspection Type: Test Observation		Inspection Date: 07/24/2013	Preliminary SNC Findings
Inspector: SCOTT POSTMA			Transmittal Date:	NOV / NOPV / NOPF:
Facility Name: University Of Iowa				N/A
Address:		ID Number:	Activity Number	: MM Participationg Progams
Coralville IA				REC'D
52241				AUG 2 8 2013
Federal Activity:		F ederal Facility: No		APCO Potential EJ: N/A
SBREFA Provided: Yes	Security Handout Provided: Yes	MM Screening Completed: N/A	EMS ISO 14001 :	Compliance Officer:
Selection Criteria 1:		Selection Criteria 2:		ACS Cod
nspection Findings:	12			

Target Quality:

Compliance test on a wood chip powered unit.

COBR

AUG Z A 2011

APCO

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 7

Science and Technology Center 300 Minnesota Avenue Kansas City, Kansas 66101

AUG 2 6 2013

MEMORANDUM

SUBJECT:

Stack Test Observation at University of Iowa's Oakdale facility in Coralville.

Iowa 🦽

FROM:

Scott Postma, Environmental Engineer

ENSV/EFCB

TO:

Lisa Hanlon, Environmental Scientist

AWMD/APCO

At the request of the Air Permitting and Compliance Branch (APCO), I conducted a stack test observation at the University of Iowa's Oakdale power plant (Oakdale) located in Coralville, Iowa. Specifically, stack emission testing was conducted on the exhaust stack of boiler #5 (Emission Unit EU-239-BLR-5). Oakdale attempted to conduct testing on March 26, 2013, and on May 1, 2013, but due to difficulty achieving operational load, these tests were not completed. Oakdale rescheduled and completed the tests on July 23 and 24, 2013. I was in attendance for each of the three field testing activities.

Oakdale is subject to Title 40, Part 63, Subpart DDDDD, National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters. The Oakdale boiler was built in 2010 by the Hurst company (Attachment 1). The boiler (Emission Unit EU-239-BLR-5) is rated at 27.5 mm Btu per hour and can be fired on either natural gas or biomass. The primary fuel for this boiler is wood chips. Oakdale operates the boiler under its March 9, 2013, Iowa Department of Natural Resources Air Quality Construction Permit (Attachment 2). Oakdale electronically mailed the attached proposed test plan to EPA on February 8, 2013 (Attachment 3). The test notification was submitted to EPA on February 8, 2013 (Attachment 4). Electronic mail and attachments associated with this test are included in Attachment 5.

Oakdale is required to conduct performance testing for sample point location, stack gas volumetric flowrate, oxygen or carbon dioxide, moisture, particulate matter (PM), oxides of nitrogen, carbon monoxide, hydrogen chloride, mercury, and condensable particulate matter

(CPM). The specific requirements are in Oakdale's Air Quality Construction Permit. Testing employed EPA reference methods 1, 2, 3A, 4, 5, 7E, 10, 26, 30B and 202 to determine the above mentioned emissions, respectively. The company performing the stack tests was Mostardi Platt Associates, Inc. (Mostardi Platt). Mostardi Platt used straight non-dilution extraction to obtain the samples.

March 26, 2013, Stack Test Activities

I arrived at the Oakdale plant the morning of Tuesday, March 26, 2013, to observe the tests. Mark Maxwell and Steve Kottenstette, the Environmental Representative and Operations Director for Oakdale, greeted me upon my arrival at the facility. I was escorted to the Oakdale facility offices. I presented my credentials to Mr. Maxwell. We discussed the facility's environmental and safety aspects, the purpose for my visit and the observation procedures I wished to follow. Mr. Maxwell told me that Mostardi Platt's stack testers were on-site and setting up for the tests. He said that the start of testing was slightly delayed. Mr. Maxwell said that Oakdale would have an escort with me during my visit. Mr. Maxwell escorted me for the majority of my visit.

Mr. Maxwell escorted me to the second floor of the boiler room where the testers were setup to perform the tests. Mostardi Platt was set up for methods 5, 202 and 26 testing in the ductwork near the main stack. The test ports were located on the rectangular duct upstream of the stack. I performed preliminary measurements of the test location's representativeness to see if they met the method 1 criteria. The duct met the minimum method 1 specifications.

Mostardi Platt's stack testing trailer was located in the parking lot outside the main Building at the Oakdale facility. I met with Jim Robertson, Rich Sollars, Brandon Schuler, and Abe Dickinson with Mostardi Platt. We discussed the stack testing procedures. I observed the performance of preliminary stack testing activities. I was escorted to the control room at the main office building for various testing related discussions. Additionally, I was given a tour of the facility.

The boiler's nominal capacity is 20,000 to 25,000 pounds of steam per hour (lbs/hr). On March 26, 2013, the boiler was not able to achieve the minimum capacity needed for testing purposes. Mr. Maxwell said that due to the damp fuel supplied earlier in the morning, they were not able to get the boiler to operate above 13,000 lbs/h. Mr. Kottenstette and Mr. Maxwell were not able to achieve a representative minimum steam load in the boiler for testing. Mr. Kottenstette eventually decided to postpone the testing until a representative operational load could be achieved.

The primary fuel for this is boiler is wood chips. The General Provisions for Subpart DDDDD requires that the boiler operates at, or near, maximum capacity during the test. Mr. Maxwell told me that the boiler can easily attain 90% capacity (18,000 pounds per hour) while burning mostly dry wood chips. Mr. Maxwell said that the woods chips that were received earlier in the morning had a substantial amount of moisture.

I observed that the wood chips delivered to the Oakdale facility had substantial water content. I observed several large clumps of frozen wood chips. The large chunks would not feed through the fuel loadout screen into the fuel feeding bunker. The wood chips that did feed into the hopper looked significantly wet. Oakdale representatives said that the test would be delayed until a representative fuel could be obtained. I asked the Oakdale representative to notify me when they determined a replacement test date. I also asked that they confirm with the fuel supplier that they get a representative fuel for the retest date. The Oakdale representatives agreed to notify me of the retesting date and to confirm that they will get a representative fuel. Mr. Kottenstette and Mr. Maxwell said that they would talk with the fuel supplier to assure that they receive a representative fuel for the retest. I left the facility in the afternoon of March 26, 2013.

May 1st and 2nd, 2013, Stack Test Activities

Mr. Maxwell notified me in mid April that they had scheduled a test date for May 1, 2013. I arrived at the Oakdale facility the morning of May 1, 2013. I met Mr. Kottenstette and Mr. Maxwell and we discussed the plan for testing. Mr. Kottenstette told me that they are having problems achieving a high load because the wood delivered that morning was cottonwood. He said the cottonwood has a heat content of 13 million Btu per cord. He said that they normally burn hardwoods that have a heat content of approximately 25 million Btu per cord. Mr. Kottenstette said that they will have to burn through the load before they can get representative wood into the fuel bunker. Testing was delayed for one day.

On Wednesday, May 2, 2013, I returned to the Oakdale facility and I met Mr. Kottenstette and Mr. Maxwell. We discussed the plan for testing. Mr. Kottenstette told me that they were working on their TriMer air pollution control device (APCD). The TriMer APCD is designed to reduce multiple pollutants including PM, NOx, SO2, HCl, Hg, and dioxins. The TriMer collects PM on ceramic filters. Urea is injected into the APCD for NOx emissions reduction. The ceramic filters acts as catalysts to convert NOx into N2 gas in the presence of urea. The filter surface has nanobits of selective catalyst reduction (SCR) catalyst on the surface of the filters. The urea helps to reduce the oxidation state of the NOx.

Mr. Kottenstette told me that their APCD was not working properly and that they would need some time to stabilize its operation before testing could begin. Testing was postponed for several hours. At approximately noon, Oakdale representatives told me that they had cancelled the tests due to the APCD problem. They said that they needed to get a representative from TriMer to correct the APCD problem. I left the Oakdale facility at approximately noon on May 2, 2013.

July 23rd and 24th, 2013, Stack Test Activities

Mark Maxwell notified me by electronic mail on June 21, 2013, that the boiler test was scheduled for July 22, 2013. Mr. Maxwell said that they had corrected the fuel moisture and APCD issues. Mr. Maxwell phoned me the morning of Monday July 22, 2013, to report that they were not able to get the boiler to run higher than 75% load. Mr. Maxwell said that the test

was still scheduled, but at a reduced load. Mr. Maxwell said that they were only able to achieve a load of 15,000 pounds of steam per hour (15 Klb/hr). The boiler is reported to have a nominal capacity of 20,000 lb/hr.

Mr. Maxwell called me on July 22, 2013, and said that he was not going to attend the testing due to a medical issue. He said that Mr. Kottenstette would also not be in attendance. Mr. Maxwell said that Mathias Miller and Joe Schwarthoff would be present representing Oakdale.

I arrived at the Oakdale facility at 7:30 a.m. on July 23, 2013. Mostardi Platt was setting up test equipment and running preliminary checks. Mostardi-Platt was setup to sample for oxygen, carbon dioxide, moisture, PM, HCl, and CPM using methods 1, 2, 3A, 4, 5, 26, and 202, respectively. Mr. Miller said that the APCD was not operating optimally. The urea injection rate needed adjustment to attain the lowest NOx emissions. At approximately 9 a.m., Mostardi Platt representative Dan Tuider told me that there was moisture in the O2/CO2 sampling line. It took about 30 minutes to clean and dry the line.

At 11 a.m. Joe Schwartzwoff notified me that the highest load the boiler able to achieve was 11,000 to 12,000 lbs/hr. Mr. Schwartzcoff said that the Boiler #5 is rated, in their configuration of equipment, to have an achievable capacity up to 22,000 lbs/hour. He said that it was possible that the canisters/cylinders (e.g. PM filtering components) in the APCD may be "coated" with PM and creosote. The PM may be restricting the effluent flow through the APCD causing an increased load on the downstream induced draft (ID) fan. The boiler is designed to maintain a negative pressure. If the forced draft (FD) fan's capacity is increased, the boiler's pressure can become positive. Under the positive pressure scenario, hot caustic gases can leak into the building air from the gas handling equipment. Therefore, the boiler's capacity is limited by the ID fan load.

Run #1 commenced at 12:05 p.m. on July 23, 2013. Mostardi Platt personnel sampled for HCl, PM, CPM, NOx, O2, and CO2. Run #1 method 202 sampled for 2.5 hours.

Mostardi-Platt also conducted sampling using method 26 and completed three 1-hour runs. Run #1, Run #2, and Run #3 commenced at 12:05, 1:35, and 2:55 p.m., respectively. During Run #1 on method 26, I noticed that the operator was not monitoring the sample line temperature. The temperature is required to be monitored every 5 minutes in Sections 8.1.5.1 and 8.1.3 of method 26. I told Abe Dickenson about this requirement. Mr. Dickenson said he was not aware of the requirement but said he would start to monitor the temperature every 5 minutes.

I observed that no sodium thiosulfate was added to the method 26 impinger solutions. Method 26 requires that it be added to stabilize the Cl- ions in the solutions in Section 8.2.2. The results may have a low bias since sodium thiosulfate was not added to the solution.

Run #2 of method 5/202 commenced at 3:30 p.m. on July 23, 2013. The boiler experienced an upset condition at 3:35 causing effluent to leak into the boiler room. The ID fan turned off. The run was stopped during the upset condition. The run recommenced

approximately 20 minutes later after the boiler was operating normally. Run #2 was completed at 7:54 p.m. I left the Oakdale facility during Run #2.

Run #3 of method 5 and 202 commenced at 9 p.m. on July 23, 2013. Run #3 was completed at midnight. I was not in attendance for Run #3.

The Oakdale facility monitors numerous parameters (e.g. temperature, etc.) to help indicate the characteristic of combustion. Attachment 6 contains the parameters monitored during the performance test.

July 24th, 2013, Stack Test Activities

I arrived at the Oakdale facility the morning of July 24, 2013. I observed Oakdale's continuous emissions monitoring systems (CEMS) on the main stack. The effectiveness and relative operation of the control equipment is measured by the CEMS. Oakdale has O2, CO2, CO, SO2, and volumetric flow CEMS.

Methods 1, 2, 3A, 7E, 10, and 30B were conducted on July 24, 2013. The first run commenced at approximately 9 a.m. on July 24, 2013. I observed the procedures utilized by Mostardi Platt on the stack during the first run. I observed that the boiler operated at stable conditions for Run #1. The control equipment appeared stable.

Run #2 commenced at about noon on July 24, 2013. Run #3 commenced at approximately 3 p.m. on July 24, 2013. No major problems were observed on July 24, 2013.

I observed several calibration error tests. No adjustments were conducted on the instruments. I observed a post test drift test. The drift was within the required specification. I completed my Method 7E and 6C Checklist during Run #2, Attachment 7.

I observed the method 3A O2 and CO2 sample collection and analysis. No major problems were observed with the sample collection.

During testing, I performed a check of the isokinetic sampling procedures for moisture and PM test equipment and procedures, respectively. The stack effluent was not saturated with water. I did not observe significant problems with the equipment and testing procedures.

I conducted several preliminary field calculations from the instantaneous measurements and stack conditions. The results indicated that the isokinetics, sample points, sampling rates, and volumetric flow rate were being correctly calculated by the testing company.

I conducted checks of the sampling lines, nozzles, and probes. I observed numerous dimensions and aspects of the equipment. I did not observe aspects outside the allowable tolerances. All of the other aspects reviewed met the minimum design criteria. I observed the operational parameters during the period of the stack tests. The operational levels will be included in the final test report. All of the reviewed documents, reported weights, and

preparation appeared to be within the specifications.

Prior to leaving the Oakdale facility, I requested copies of the stack test raw data. I received some of the data by the time I left the facility. Attachment 6 contains the raw test data sheets.

An exit meeting was conducted prior to leaving Oakdale. A Confidentiality Notice and Receipt for Documents and Samples were provided to the facility representative. None of the information was claimed as confidential (Attachment 8 and Attachment 9). I provided copies of the Security Awareness handout and U.S. EPA Small Business Resources Regulatory Enforcement Fairness Act (SBREFA) brochure to the facility representative.

Attachments:

- 1. Boiler Specifications, 27 pages.
- 2. Air Quality Construction Permit, 11 pages.
- 3. Proposed Test Plan, January 30, 2013, 36 pages.
- 4. Test Notification, 1 page.
- 5. Correspondences and Attachments, 7 pages.
- 6. Raw Data Sheets and Operating Data, 19 pages.
- 7. Methods 7E and 6C Checklist, 6 pages.
- 8. Confidentiality Notice, 1 page.
- 9. Receipt for Samples and Documents, 1 page.

REGION 7 - AIR - EPA INSPECTION CONCLUSION DATA SHEET (ICDS) 2006 Form

Insp	ectors Name: Scott Postma	Phone No.: (913) 551-7048
1.	*Compliance Activity Type: Compliance Inspection	
2.	*Compliance Monitoring Activity Name: <u>University of Iowa, Oakdal</u>	ale Campus
	gion <u>7</u> EPA ID Number (AFS): <u>2090008</u>	
	- , , ,	
3. 4.	*Facility Name: <u>University of Iowa, Oakdale Campus Plant</u>	
	*Street Address: 2320 Crosspark Road, Corelville, Iowa 52241	
	*City, State, Zip: Corelville, lowa 52241	
5.	- 9. ** Date of Inspection: Begin: <u>3/26/2013</u> End: <u>6/ /2013</u>	(mm/dd/yyyy)
10.	*Federal Statutes: <u>CAA - Stationary</u>	
11.	*Sections: Circle the regulatory citation(s) that apply to the inspection	ion conducted
CA CA CA CA CA CA	A -110 - CAASIP - State Implementation Plan (SIP) A -111 - CAANSPS - New Source Performance Standards (NSPS) A -112 - CAAMACT - NESHAP/MACT A -118 - COPFFF - Control of Pollution from Federal Facilities A -129 - CAASWFC - Solid Waste Fuel Combustion A -183(E)(A) - CAABAC - Best Available Controls A -183(E)(B) - CAACCP - Consumer/Commercial Products 83(F) - CAATVS - Tank Vessel Standards Citations: circle all citations of 40 CFR that were inspected: 59, 6 * Programs: No entry needed. This data element is automatically po	opulated by the ICIS data system
15.	Do not complete	
16.	*Compliance Monitoring Action Reason: (Circle one of the follows)	owing) Agency Priority
	Citizen Complaint/Tip <u>Core Program</u> Selected Monitoring	g Action Random Evaluation or Inspection
17.	*Compliance Monitoring Agency Type: <u>EPA</u>	
18.	- 20. Does not apply	
21.	Compliance Monitoring Action Outcome: Check one (if known at	t the time of the activity):
	Administrative Immediately corrected J	Judicial
	No compliance monitoring (access denied) No compliance	iance monitoring (facility shutdown)
	Not immediately corrected Notice of Determination	Under review XX Withdrawn

22.	MOA Priorities: (Circle only one (if it applies) from the following) CAA Air Toxics & NSR/PSD - Coal-Fired Power Plant (SIC 4911) CAA NSR/PSD CAA Air Toxics	Petroleum Refining - Benzene Waste (BENZW) Petroleum Refining - LDAR (LDAR) Petroleum Refining - Refinery Fuel Gas (REFFG)
23.	Regional Priorities: (Circle only one (if it applies) from the following EPCRA & CAA Section 112(r) Accident History by Facility EPCRA & CAA Section 112(r) Accident History by Industry Sector EPCRA & CAA Section 112(r) St. Louis Project Lead Based Paint	g) Agriculture Endangered ECO Systems Sensitive Populatio n s
24.	**Did you observe deficiencies (potential violations) during the	on-site inspection? XX Yes □ No
25.	N/A cannot be a response. **If you observed deficiencies, did you communicate them to fa	acility during the inspection? XX Yes
26.	**Deficiencies Observed: <u>Check one or more of the following:</u> _Potential violation of a compliance schedule in an enforceable orde _Potential failure to maintain a record or failure to disclose a docume _Potential failure to maintain, inspect or repair equipment including n	ent
	Potential failure to complete or submit a notification, report, certification Potential failure to obtain a permit, product approval, or certification Potential failure to follow a required sampling or monitoring procedu Potential failure to follow or develop a required management practic Potential failure to identify and manage a regulated waste or polluta Potential failure to report regulated events such as spills, accidents Potential incorrect use of a material (e.g., pesticide, waste, product Potential failure to follow a permit condition (s) Potential excess emission in violation of a regulation	ation, or manifest ure or laboratory procedure ce or procedure ant in any media , etc.
27.	**Did you observe or see the facility take any actions during the to the facility? XX_Yes No If YES, check only the action in the "optional" section. (Check all that apply) Action(s) taken Complete(d) a Notification or Report Correct(ed) Monitoring Deficiencies Correct(ed) Record Keeping Deficiencies Implemented New or Improved Management Practices or Procedure	ction(s) actually observed/seen or write in a short description
	Improved Pollutant Identification (e.g., Labeling, Manifesting, Storage Reduced Pollution (e.g., Use Reduction, Industrial Process Change Request(ed) a Permit Application or Applied for a Permit Verify (ied) Compliance with Previously Issued Enforcement Action	e, Emissions or Discharge Change, etc.)
28.	Did you provide general compliance assistance in accordance Providing Compliance Assistance During Inspections? XX Yes	
29.	Did you provide site-specific compliance assistance in accordance Providing Compliance Assistance During Inspections? XX Yes Note: This form does not require EPA inspectors to provide compliance	s □ No ance assistance.
Optio	onal Information: Describe actions taken by the facility or assistant	ce provided to the facility (Print neatly)
		<u> </u>
For D 30.	Data Entry Staff Use Only: Date and initials of person entering data into ICIS (mm/dd/yyyy):	

ATTACHMENT 1

STATE OF IOWA

TERRY E. BRANSTAD, GOVERNOR KIM REYNOLDS, LT. GOVERNOR

ROGER L. LANDE, DIRECTOR

March 9, 2012

Mark Maxwell **Environmental Engineer** 330 USB University of Iowa Iowa City, Iowa 52242

Re: Plant Number: 52-01-005

Project Number:

12-088

Permlt Number:

78-A-023-S7

Dear Mr. Maxwell:

This letter transmits the attached construction permit for the above referenced project consisting of the following air contaminant source described in the application received March 1, 2012. It is the Iowa Department of Natural Resources Air Quality Bureau's (Department's) understanding that the letter reflects accurate and complete information.

Emission Point	Description	Control	Testing Required	IDNR Permit Number	Action
EP 239-1	OD Boilers, 2, 3, and 4, Hurst Boiler, and AgBiopower Gasifier	SCR, filter for Hurst Boilers	Yes	78-A-023-S7	Issue

Your attention is directed toward the specified Permit Conditions contained within the permits; especially Sections 10, 12, 13, 14, and 15. Based on the information submitted in your letter, the Department has made the following determinations:

1. The natural gas boilers (OD's #2, 3, and 4) are not currently subject to a New Source Performance Standards (NSPS) at this time, as they were constructed prior to the applicability date of June 9, 1989 and not subsequently modified as to increase emissions.

- 2. The Hurst Boiler is subject to the NSPS, Subpart Dc Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units.
- 3. This facility is of the type subject to 40 CFR 63 Subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters.
- 4. This facility is a major source with regard to Title V Operating Permit regulations.
- 5. This facility is a major source with regard to PSD regulations.
- 6. Compliance testing is required at this time.

The above is a brief list of the determinations made and limits being required. Please review the construction permits to understand the requirements to remain in compliance. Also attached is a copy of the "Air Quality Equipment Notification Form" to assist you in "Notification, Reporting and Recordkeeping" (Section 8). In the future, a status report of the construction permit application(s) submitted to the Department is available at the State Permitting and Air Reporting System (SPARS) website located at the following address: http://aq48.dnraq.state.ia.us:8080/wspars/default.htm. When requesting future modifications to the permit, use the permit number and your plant number for identification. Should you have any questions about these issued permits, please contact Julie Ingoli at (515) 242-5131. For any other questions, please call 1-877 AIR IOWA.

Sincerely,

Christopher A. Rolling, P.E.

Senior Environmental Engineer

Air Construction Permitting

Air Quality Bureau, IDNR

cc: DNR Field Office 6 w/ enclosures
DNR File 52-01-005 w/ enclosures

Phristopher a-Roling

Enclosures - Air Construction Permits: 78-A-023-S7

Iowa Department of Natural Resources Air Quality Construction Permit

Permit Holder

Firm: The University of Iowa - Oakdale Campus

Contact:

Responsible Party:

Mark Maxwell

Environmental Engineer

Douglas K. True

Senior VP F&O, Treasurer

(319) 335-6185

330 USB, University of Iowa Iowa City, Iowa 52242

Permitted Equipment

Emission Unit(s):

OD#2 Boiler - 32.1 MMBtu/hr - Natural Gas

OD#3 Boiler - 32.1 MMBtu/hr - Natural Gas OD#4 Boiler - 20.3 MMBtu/hr - Natural Gas

EU-239-BLR-5 – Hurst Boiler, 27.5 MMBtu/hr – Gas/Biomass EU-239-GSFR-1 – AgBiopower Gasifier, 2.5 MMBtu/hr (thru Hurst)

Control Equipment:

Ultra Temp Hot Gas Filtration (SCR, filter) for Hurst Boiler

OD#2, OD#3 and OD#4 Boilers - no control

Emission Point:

EP 239-1

Equipment Location:

Oakdale Campus

Coralville, Iowa 52319

Plant Number:

52-01-005

Permit No.	Proj. No.	Description	Date	Testing
78-A-023		Original Permit	2/7/78	No
78-A-023-S1	96-379	Coal to Natural gas/oil for OD#2, 3 and 4	8/28/96	No
78-A-023-S2	98-064	Add Boiler 1, Coal to Gas/oil	3/16/98	No
78-A-023-S3	01-175	Correct Air Flow	5/24/01	No
78-A-023-S4	03-685	Limit Fuel to Natural Gas Only	11/18/03	No
78-A-023-S5	10-069	Remove OD#1 \$ Add Hurst Boiler/Gasifier	6/22/10	Yes
78-A-023-S6	12-015	Reduce PM/PM10 Limit for Hurst Boiler	1/18/12	Yes
78-A-023-S7	12-088	Permit Corrections for Hurst Boiler	3/9/12	Yes

Under the Direction of the Director of the Department of Natural Resources

CPFP | 5201005 | 03092012 | 12088 | 78A023S7

PERMIT CONDITIONS

The permit holder, owner and operator of the facility shall assure that the installation, operation, and maintenance of this equipment is in compliance with all of the conditions of this permit and all other applicable requirements. This permit and its provisions are subject to the appeal rights set forth in Iowa Administrative Code (IAC), rule 561—7.5.

1. Departmental Review

This permit is issued based on information submitted by the applicant. Any misinformation, false statements or misrepresentations by the applicant shall cause this permit to be void. In addition, the applicant may be subject to criminal penalties according to Iowa Code Section 455B.146A.

This permit is issued under the authority of 567 Iowa Administrative Code (IAC) 22.3. The proposed equipment has been evaluated for conformance with Iowa Code Chapter 455B; 567 IAC Chapters 20 - 34; and 40 CFR Parts 51, 52, 60, 61, and 63 and has the potential to comply.

No review has been undertaken on the engineering aspects of the equipment or control equipment other than the potential of that equipment for reducing air contaminant emissions. The DNR assumes no liability, directly or indirectly, for any loss due to damage to persons or property caused by, resulting from, or arising out of the design, installation, maintenance or operation of the proposed equipment.

2. Transferability

As limited by 567 IAC 22.3(3)"P', this permit is not transferable from one location to another or from one piece of equipment to another, unless the equipment is portable. When portable equipment for which a permit has been issued is to be transferred from one location to another, the DNR shall be notified in writing at least fourteen (14) days prior to transferring to the new location unless the equipment will be located in an area which is classified as nonattainment for the National Ambient Air Quality Standards (NAAQS) or is a maintenance area for the NAAQS in which case notification shall be given thirty (30) days prior to the relocation of equipment (See Permit Condition 8.A.6). The owner will be notified at least ten (10) days prior to the scheduled relocation if the relocation will cause a violation of the (NAAQS). In such case, a supplements permit shall be required prior to the initiation of construction of additional control equipment or equipments modifications needed to meet the standards.

The permit is for the construction and operation of specific emission unit(s), control equipment, and emission point as described in this permit and in the application for this permit. Any owner or operator of the specified emission unit(s), control equipment, or emission point, including any person who becomes an owner or operator subsequent to the date on which this permit is issued, is responsible for compliance with the provisions of this permit. No person shall construct, install, reconstruct or alter this emissions unit, control equipment or emission point without the required revisions to this permit.

A list of nonattainment areas and maintenance areas for the NAAQS can be obtained from the Department.

3. Construction

19%

It is the owner's responsibility to ensure that construction conforms to the final plans and specifications as submitted, and that adequate operation and maintenance is provided to ensure that no condition of air pollution is created.

This permit shall become void if any one of the following conditions occur:

- (1) the construction or modification of the proposed project, as it affects the emission point(s) permitted herein, is not initiated within eighteen (18) months after the permit issuance date; or
- (2) the construction or modification of the proposed project, as it affects the emission point(s) permitted herein, is not completed within thirty-six (36) months after the permit issuance date; or

3. Construction (Continued)

(3) the construction or modification of the proposed project, as it affects the emission point(s) permitted herein, is not completed within a time period specified elsewhere in this permit.

3.a. Original Permits

The owner or operator shall obtain a new permit if any changes are made to the final plans and specifications submitted for the proposed project.

3.b. Modified or Supplemental Permits

This permit supersedes any and all previous permits issued for the emission point(s) or emission unit(s) permitted herein.

However, the permittee may continue to act under the provisions of the previous permit for the emission point(s) or emission unit(s) until one of the following conditions occurs:

- (1) The proposed project authorized by this permit is completed as it affects the emission point(s) permitted herein; or
- (2) The permit becomes void.

The owner or operator shall obtain a new permit if:

- (1) Any changes are made to the final plans and specifications submitted for the proposed project; or
- (2) This permit becomes void.

4. Credible Evidence

As stated in 567 IAC 21.5 and also in 40 CFR Part 60.11(g), where applicable, any credible evidence may be used for the purpose of establishing whether a person has violated or is in violation of any provisions specified in this permit or any provisions of 567 IAC Chapters 20 through 34.

5. Owner Responsibility

Issuance of this permit shall not relieve the owner or operator of the responsibility to comply fully with applicable provisions of the State Implementation Plan (SIP), and any other requirements of local, state, and federal law.

The owner or operator of any emission unit or control equipment shall maintain and operate the equipment and control equipment at all times in a manner consistent with good practice for minimizing emissions, as required by paragraph 567 IAC 24.2(1) "Maintenance and Repair".

6. Excess Emissions

Excess emissions during a period of startup, shutdown, or cleaning of control equipment are not a violation of the emission standard if it is accomplished expeditiously and in a manner consistent with good practice for minimizing emissions except when another regulation applicable to the unit or process provides otherwise. Cleaning of control equipment, which does not require the shutdown of process equipment, shall be limited to one six-minute period per one-hour period. An incident of excess emissions other than the above is a violation and may be subject to criminal penalties according to Iowa Code 455B.146A. If excess emissions are occurring, either the control equipment causing the excess shall be repaired in an expeditious manner, or the process generating the emissions shall be shutdown within a reasonable period of time, as specified in 567 IAC 24.1.

4 .

Coralville, Iowa 78-

An incident of excess emissions shall be orally reported to the appropriate DNR field office within eight (8) hours of, or at the start of, the first working day following the onset of the incident (See section 8.B.1). A written report of an incident of excess emissions shall be submitted as a follow-up to all required oral reports within seven (7) days of the onset of the upset condition.

7. Disposal of Contaminants

The disposal of materials collected by the control equipment shall meet all applicable rules.

8. Notification, Reporting, and Recordkeeping

A. The owner shall furnish the DNR the following written notifications:

- 1. The date construction, installation, or alteration is initiated postmarked within thirty (30) days following initiation of construction, installation, or alteration;
- 2. The actual date of startup, postmarked within fifteen (15) days following the start of operation;

3. The date of each compliance test required by Permit Condition 12, at least thirty (30) days before the anticipated compliance test date;

- 4. The date of each pretest meeting, at least fifteen (15) days before the proposed meeting date. The owner shall request a proposed test plan protocol questionnaire at least sixty (60) days prior to each compliance test date. The completed questionnaire shall be received by the DNR at least fifteen (15) days before the pretest meeting date;
- 5. Transfer of equipment ownership, within 30 days of the occurrence;

6. Portable equipment relocation:

- a. at least thirty (30)days before equipment relocation if the equipment will be located in a nonattainment area for the National Ambient Air Quality Standards (NAAQS) or a maintenance area for the NAAQS;
- b. at least fourteen (14) days before equipment relocation.
- B. The owner shall furnish the DNR with the following reports:

1. Oral excess emissions reports, in accordance with 567 IAC 24.1;

- 2. A written compliance demonstration report for each compliance testing event, whether successful or not, postmarked not later than six (6) weeks after the completion of the test period unless other regulations provide for other notification requirements. In that case, the more stringent reporting requirement shall be met;
- 3. Operation of this emission unit(s) or control equipment outside of those limits specified in Permit Conditions 10 and 14 and according to the schedule set forth in 567 IAC 24.1.
- C. The owner shall send correspondence regarding this permit to the following address:

Construction Permit Supervisor
Air Quality Bureau
Iowa Department of Natural Resources
7900 Hickman Road, Suite 1
Windsor Heights, IA 50324
Telephone: (515) 281-8189
Fax: (515) 242-5094

D. The owner shall send correspondence concerning stack testing to:

Stack Testing Coordinator
Air Quality Bureau
Iowa Department of Natural Resources
7900 Hickman Road, Suite 1
Windsor Heights, IA 50324
Telephone: (515) 242-6001
Fax: (515) 242-5127

8. Notification, Reporting, and Recordkeeping (Continued)

E. The owner shall send reports and notifications to:

Compliance Unit Supervisor
Air Quality Bureau
Iowa Department of Natural Resources
7900 Hickman Road, Suite 1
Windsor Heights, IA 50324
Telephone: (515) 281-8448
Fax: (515) 242-5127

IDNR Field Office #6 1023 West Madison Washington, Iowa 52353 Telephone: (319) 653-2135 Fax: (319) 653-2856

F. All data, records, reports, documentation, construction plans, and calculations required under this permit shall be available at the plant during normal business hours for inspection and copying by federal, state, or local air pollution regulatory agencies and their authorized representatives, for a minimum of two (2) years from the date of recording.

9. Permit Violations

Knowingly committing a violation of this permit may carry a criminal penalty of up to \$10,000 per day fine and 2 years in jail according to Iowa Code Section 455B.146A.

10a. Emission Limits - Natural Gas Only Boilers (OD#2, OD#3 and OD#4)

Pollutant	lb/hr¹	tons/yr ²	Additional Limits	Reference (567 IAC)
Particulate Matter (PM)	0.764	NA	0.6 lb/MMBtu	23.3(2)"b"(3)
PM ₁₀	0.764	NA	NA	NA
Opacity	NA	NA	40%3	23.3(2)"d"
Sulfur Dioxide (SO ₂)	NA	NA	500 ppmv	23.3(3)"e"
Nitrogen Oxides (NO _X)	10.04	NA	NA	NA
Volatile Organic Compounds	NA	NA	NA	NA
Carbon Monoxide (CO)	NA	NA	NA	NA
Lead (Pb)	NA	NA	NA	NA NA
(Single HAP)	NA	NA	NA	NA
(Total HAP)	NA	NA	NA	NA

¹ Standard is expressed as the average of three (3) runs.

² Standard is a 12-month rolling total.

⁴ Permit limits established during Project No. 03-685 (issued 11/18/2003) when boilers were modified limiting them to Natural Gas Only to Natural Gas thus emissions limits were reduced. Limits reflect AP-42 emission factors Section 1.4 (7/98 Edition).

An exceedance of the indicator opacity of 10% will require the owner/operator to promptly investigate the emission unit and make corrections to operations or equipment associated with the exceedance. If exceedances continue after the corrections, the DNR may require additional proof to demonstrate compliance (e.g., stack testing).

10b. Emission Limits - Hurst Boiler

Pollutant	lb/hr¹	tons/yr2	Additional Limits	Reference (567 IAC)
Particulate Matter (PM)	1.0734	NA	0.1 gr/dscf	23.3(2)"a"
PM ₁₀	1.0734	NA	NA	NAAQS
Opacity	NA	NA	40%³	23.3(2)"d"
Sulfur Dioxide (SO ₂)	NA	30.0 ^{4,5}	NA	NA
Nitrogen Oxides (NO _x)	4.134	. NA	NA	NAAQS
Volatile Organic Compounds	NA	NA	NA	NA ·
Carbon Monoxide (CO)	4.134	NA	NA	NA
Lead (Pb)	NA	NA	NA	NA
Hydrogen Chloride (HCL)	2.06	NA	NA ·	NA
(Total HAP)	NA	NA.	NA	NA

¹ Standard is expressed as the average of three (3) runs.

² Standard is a 12-month rolling total.

⁴ Set to keep project 10-069 minor for PSD, dispersion modeling passed and accepted by IDNR May 25, 2010.

⁵ Sulfur dioxide emission due to solid fuels only – see Condition 15 for details.

⁶ Set to keep project 10-069 a minor source for 112(g).

11. Emission Point Characteristics

This emission point shall conform to the specifications listed below:

Parameter	Value
Stack Height, (ft, from the ground)	90
Discharge Style	Vertical, unobstructed
Stack Opening, (inches, dia.)	60
Exhaust Temperature (°F)	460
Exhaust Flowrate (scfm)	34,700 scfm OD Boilers 19,724 acfm Hurst Boiler

The temperature and flow rate are intended to be representative and characteristic of the design of the permitted emission point. The Department recognizes that the temperature and flow rate may vary with changes in the process and ambient conditions. If it is determined that any of the emission point design characteristics are different than the values stated above, the owner/operator must notify the Department and obtain a permit amendment, if required.

³ An exceedance of the indicator opacity of 10% will require the owner/operator to promptly investigate the emission unit and make corrections to operations or equipment associated with the exceedance. If exceedances continue after the corrections, the DNR may require additional proof to demonstrate compliance (e.g., stack testing).

12. Compliance Demonstration(s) and Performance Testing

Pollutant	Initial	Subsequent	Methodology	Frequency
PM (federal)	No	No	NA	NA
PM (state)	Yes ¹	No	Stack Test	NA
PM ₁₀	No	No	NA	NA
Opacity	Yes¹	No	Stack Test	NA
Opacity SO ₂ NO _X VOC	Yes ³	Yes ³	Recordkeeping ³	Continuous
NO _X	Yes ¹	No	Stack Test	NA
VOC	No	No	NA	NA
CO	Yes¹	No	Stack Test	NA
Pb	No	No	NA	NA
HCL	Yes ^{1,2}	No	Stack Test	NA

Hurst boiler only, when combusting solid fuel.

If an initial compliance demonstration specified above is testing, the owner shall verify compliance with the emission limitations contained in Permit Condition 10 within sixty (60) days after achieving maximum production rate and no later than one hundred eighty (180) days after the initial startup date of the proposed equipment.

If subsequent testing is specified above, the owner shall verify compliance with the emission limitations contained in Permit Condition 10 according to the frequency noted above.

If testing is required, the owner shall use the test method and run time listed in the table below unless another testing methodology is approved by the Department prior to testing.

Pollutant	Test Run Time	Test Method
PM (federal)	1 hour	40 CFR 60, Appendix A, Method 5
PM (state)	1.5 hour	Iowa Compliance Sampling Manual Method 5
PM_{10}	1 hour	40 CFR 51, Appendix M, 201A with 202
Opacity	l hour	40 CFR 60, Appendix A, Method 9
SO ₂	1 hour	40 CFR 60, Appendix A, Method 6C
NO _X	1 hour	40 CFR 60, Appendix A, Method 7E
VOC	1 hour	40 CFR 60, Appendix A, Method 25A
CO	1 hour	40 CFR 60, Appendix A, Method 10
Pb	1 hour	40 CFR 60, Appendix A, Method 12
Other		

The unit(s) being sampled should be operated in a normal manner at its maximum continuous output as rated by the equipment manufacturer, or the rate specified by the owner as the maximum production rate at which this unit(s) will be operated. In cases where compliance is to be demonstrated at less than the maximum continuous output as rated by the manufacturer, and it is the owner's intent to limit the capacity to that rating, the owner may submit evidence to the Department that this unit(s) has been physically altered so that capacity cannot be exceeded, or the Department may require additional testing, continuous monitoring, reports of operating levels, or any other information deemed necessary by the Department to determine whether this unit(s) is in compliance.

Each emissions compliance test must be approved by the Department. Unless otherwise specified by the Department, each test shall consist of three (3) separate runs. The arithmetic mean of three (3) acceptable test runs shall apply for compliance, unless otherwise indicated by the Department.

A pretest meeting shall be held at a mutually agreeable site no less than fifteen (15) days prior to the date of each test. Representatives from the Department shall attend this meeting, along with the owner and the testing firm, if any. It shall be the responsibility of the owner to coordinate and schedule the pretest meeting. The owner shall be responsible for the installation and maintenance of test ports. The Department shall reserve the right to impose

² Test shall be done for the initial combusting of recycled paper sludge and also for corn cobs. The University of Iowa may demonstrate compliance for recycled paper sludge by using the results from the test when combusting corn cobs.

³ When combusting solid fuels in the Hurst boiler, the owner or operator shall calculate and record the amount of sulfur dioxide emitted due to the solid fuels for each fuel combusted using a mass balance.

University of Iowa Oakdale Boilers (EP 239-1)
Coralville, Iowa 78-A-023-S7
additional, different, or more detailed testing requirements.

13. NSPS and NESHAP Applicability

- A. The natural gas boilers (OD#2, OD#3 and OD#4) are not currently subject to a New Source Performance Standard (NSPS) at this time, as they were constructed prior to the applicability date of June 9, 1989 and not subsequently modified as to increase emissions.
- B. The Hurst Boiler is subject to the NSPS, Subpart Dc Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units.
- C. This facility is of the type subject to 40 CFR 63 Subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Industrial, Commercial, and Institutional Boilers and Process Heaters.

14. Operating Limits

Operating limits for this emission unit shall be:

- A. OD#2, OD#3 and OD#4 shall be fired by natural gas only. Prior to burning any other fuel in these units, the permittee shall apply for, and obtain, a new construction permit from the Iowa DNR.
- B. The maximum heat input for OD#2 is 32.1 MMBtu/hr. The maximum heat input for OD#3 is 32.1 MMBtu/hr. The maximum heat input for OD#4 is 20.3 MMBtu/hr. The maximum heat input for the Hurst boiler is 27.5136 MMBtu/hr.
- C. The gasifier (EU-239-GSFR-1) shall exhaust through the Hurst Boiler, and shall be operated only when the Hurst Boiler is also in operation.
- D. The Hurst Boiler may operate a maximum of 7,700 hours per twelve month rolling period.
- E. Approved fuels for the Hurst Boiler include the following: natural gas, landfill gas, syngas from the gasifier, biomass including oat hulls, chipped poplar wood, untreated and unpainted wood chips, wood pellets, corn cobs, corn seed, soybean seeds, cardboard, and recycled paper sludge.
- F. Approved fuels for the gasifier include the following: oat hulls, chipped poplar wood, untreated and unpainted wood chips, wood pellets, corn cobs, corn seed, soybean seeds, cardboard, car fluff, car arm rest materials, corn stalks/stover and recycled paper sludge.
- G. The owner or operator shall keep a maintenance plan and records of conducted maintenance for the boiler and associated control equipment, and must, to the extent practicable, maintain and operate the boilers in a manner consistent with good air pollution control practice for minimizing emissions.

15. Operating Condition Monitoring

All records as required by this permit shall be kept on-site for a minimum of two (2) years and shall be available for inspection by the DNR. Records shall be legible and maintained in an orderly manner. These records shall show the following:

- A. The owner or operator shall record the hours of operation for the Hurst boiler, and update the twelve month rolling total hours of operation on a monthly basis.
- B. The owner or operator shall keep records of control equipment inspections and maintenance.
- C. The owner or operator shall monitor and record the pressure drop across the control equipment on a weekly

University of Iowa

Oakdale Boilers (EP 239-1) 78-A-023-S7

Page 9 of 9

Coralville, Iowa

15. Operating Condition Monitoring (Continued)

- D. The owner or operator shall monitor and record the reagent injection rates for the control equipment on a weekly basis.
- E. The owner or operator shall notify the DNR as required in 40 CFR 60.48c(a) for the Hurst Boiler.
- F. The owner or operator shall record the amount of each fuel combusted in the Hurst boiler on each operating day. If syngas from the gasifier is combusted, the owner or operator shall also note the amounts and type of feedstock used in the gasifier.
- G. The owner or operator shall keep records demonstrating the sulfur percentage of each solid fuel combusted in the Hurst boiler on an as-fired basis.
- H. Sulfur dioxide emissions shall be updated per twelve month rolling total (sum of emissions from all fuels) on a monthly basis.

16. Continuous Emission Monitoring

Continuous emission monitoring is not required by this permit at this time.

17. Description of Terms and Acronyms

acfm Actual cubic feet per minute

Applicant The owner, company official or authorized agent

CFR Code of Federal Regulations

Department Iowa Department of Natural Resources
DNR Iowa Department of Natural Resources
gr/dscf Grains per dry standard cubic foot

HAP Hazardous Air Pollutant(s)
IAC Iowa Administrative Code
MMBtu One million British thermal units

NA Not Applicable

NAAQS National Ambient Air Quality Standards

NO_X Nitrogen Oxides

Owner The owner or authorized representative

Permit This document including permit conditions and all submitted application materials PM₁₀ Particulate Matter equal to or less than 10 microns in aerodynamic diameter

scfm Standard cubic feet per minute SIP State Implementation Plan

SO₂ Sulfur Dioxide

VOC Volatile Organic Compound

END OF PERMIT CONDITIONS

ATTACHMENT 2

platt

Gaseous and Particulate Emissions Test Protocol

The University of Iowa

Oakdale Renewable Energy Plant Hurst Boiler Exhaust Duct Coralville, Iowa

> Plant No. 52-01-005 Permit No. 78-A-023-S5

Protocol No. M131103

January 30, 2013

Gaseous and Particulate Emissions Test Protocol

The University of Iowa

Oakdale Renewable Energy plant Hurst Boiler Exhaust Duct Coralville, Iowa

> Protocol Submittal Date January 30, 2013

> > Submitted By

Chris Jensen (630) 993-2100, Phone cjensen@mp-mail.com, Email

> © Copyright 2013 All rights reserved in Mostardi Platt

PROTOCOL NO. M131103

TABLE OF CONTENTS	
1.0 INTRODUCTION	1
2.0 PROCESS DESCRIPTION	1
3.0 SPECIFIC TEST PROCEDURES	2
4.0 PROJECT SCHEDULE	3
5.0 PROJECT PERSONNEL	3
6.0 TEST METHODOLOGY Method 1 and 2 Sample Point and Velocity Traverse Determination Method 3A Oxygen (O ₂) and Carbon Dioxide (CO ₂) Determination Method 10 Carbon Monoxide (CO) Determination Method 7E Nitrogen Oxides Determination Method 26 Hydrogen Chloride (HCI) Determination Method 30B Mercury Determination (Sorbent Trap Method) Method 5 Particulate Matter Determination Method 202 Condensable Particulate Determination	3 4 4 5 5
7.0 QUALITY ASSURANCE PROCEDURES	6
GENERAL INFORMATION APPENDED Test Section Diagram Sample Train Diagrams Calculation Nomenclature and Formula Calibration Data Field Data Sheets	

1.0 INTRODUCTION

MOSTARDI PLATT will be performing a gaseous and particulate emission test program at the Oakdale Renewable Energy Plant in Coralville, lowa on the Hurst Boiler Exhaust Duct.

The test location and test parameters are summarized below.

Test Location	Test Parameters
Exhaust Duct	Nitrogen Oxides (NO _x), Carbon Monoxide (CO), Total Particulate Matter (TPM),
	Mercury (Hg), and Hydrochloric Acid (HCI)

Emission limits for the above listed parameters are as follows.

Location	Pollutant	MACT Emission Limit	Permitted Emission Limit
	TPM	0.029 lb/MMBtu	2.20 lb/hr and 0.1 gr/dscf
	HCI	0.022 lb/MMBtu	
Hurst Boiler Exhaust Duct	Hg	0.86 TBtu	87 St 100 # 1
	NO _x		4.13 lb/hr
	СО	590 ppm @ 3% O ₂	4.13 lb/hr

The identification of individuals associated with the test program is summarized below.

Location	Address	Contact
Test Facility	The University of Iowa Oakdale Renewable Energy Plant Oakdale Campus Coralvillle, Iowa 52319	Mark Maxwell Environmental Engineer (319) 335-6185 (phone) mark-maxwell@uiowa.edu
Testing Company Representative	Mostardi Platt 888 Industrial Road Elmhurst, Illinois 60126	Chris Jensen Senior Project Manager (630) 993-2100 (phone) cjensen@mp-mail.com

2.0 PROCESS DESCRIPTION

The Hurst Biomass Boiler located at the University of Iowa Oakdale Power Plant, is a MMBton boiler capable of burning biomass, pipeline natural gas, or syngas. While the construction permit allows the use of several different biomass fuels, we are currently limiting the solid fuel to wood chips only. A 2.5 MMBtu/Hr gasifier attached to the boiler will occasionally be operated to supply syngas to the unit, and natural gas will be used for boiler startup. Flue gas from the boiler enters a duct that is shared with three other natural gas boilers, and passes through the plant to a 90' brick stack located on the north side of the power plant.

4.0 PROJECT SCHEDULE

Mostardi Platt will provide the scope of services described above according to the following schedule:

Day	Activity	On-Site Hours
1	Travel to facility and set up equipment	2
2	Perform all flow, TPM, and HCl test runs	9
3	Perform all flow, Hg, NO _x , and CO test runs	8
4	Return travel	< 11 -11 1,

5.0 PROJECT PERSONNEL

Mostardi Platt will provide the following personnel to conduct the scope of services described above:

- 1 Project Manager
- 2 Test Engineers

6.0 TEST METHODOLOGY

Emission testing will be conducted following the methods specified in 40 CFR Part 60, Appendix A, and 40 CFR Part 51, Appendix M. Schematics of the sampling trains and data sheets to be used are included in the Appendix.

The following methodologies will be performed during the test program:

Method 1 and 2 Sample Point and Velocity Traverse Determination

The stack gas velocity and volumetric flowrate are determined using Reference Methods 1 and 2, 40 CFR, Part 60, Appendix A. The characteristic of the measurement location is summarized below.

Sample Point Selection

Location	Upstream Diameters	Downstream Diameters	Test Parameters	Number of Sampling Points
	*		HCl and Hg	1
Exhaust Duct	> 0.5	> 2.0	NO _x and CO	20
	8		TPM	25

Velocity pressures are determined by traversing the test location with an S-type pitot tube. Temperatures are measured using a K-type thermocouple with a calibrated digital temperature indicator. The molecular weight and moisture content of the gases are determined to permit the calculation of the volumetric flowrate. Sampling points utilized are determined using Method 1, 40CFR60.

3.0 SPECIFIC TEST PROCEDURES

Detailed test methodology is appended. Three (3) test runs will be performed at each specified Stack test location in accordance with the following USEPA Methods.

- 75 E 326
- 1. TPM test runs will be performed in accordance with United States Protection Agency (USEPA) Method 5, Title 40, Code of Federal Regulations Part 60, (40CFR60), Appendix A and Method 202, 40CFR51, Appendix M. Each test run will be 2 hours. The test train will be operated at 248°F (+/-25°F) and will utilize a glass probe liner.
- 2. Volumetric flow will be obtained from the Methods 5 sample train utilizing USEPA Methods 1, and 2, 40CFR60, Appendix A.
- 3. Oxygen (O₂) and carbon dioxide (CO₂) test runs will be performed utilizing USEPA Method 3A, 40CFR60, Appendix A (instrumental analyzer method). The average O₂ and CO₂ gas effluent concentrations for each run will be determined from the average gas concentrations displayed by the gas analyzers and adjusted for the zero and upscale sampling system bias checks immediately preceding and following each run.
- 4. Carbon monoxide (CO) test runs will be performed in accordance with USEPA Method 10, 40CFR60, Appendix A. Each run will be one-hour in length. The average CO concentration for each run will be determined from the average gas concentrations displayed by the gas analyzer and adjusted for the zero and upscale sampling system bias check immediately preceding and following each run.
- 5. Nitrogen oxides (NO_x) test runs will be performed in accordance with USEPA Method 7E, 40CFR60, Appendix A. Each run will be one-hour in length. The average NO_x concentration for each run will be determined from the average gas concentrations displayed by the gas analyzer and adjusted for the zero and upscale sampling system bias check immediately preceding and following each run.
- 6. Paired mercury (Hg) test runs will be completed and each test run will be onehour in length. All temperature settings and quality assurance requirements of USEPA Method 30B will be followed.
- 7. Hydrochloric Acid (HCI) test runs will be performed in accordance with USEPA Method 26, 40CFR60, Appendix A. Each run will be one-hour in length.

Method 3A Oxygen (O₂) and Carbon Dioxide (CO₂) Determination

Stack gas O₂ and CO₂ concentrations will be determined in accordance with Method 3A. A Servomex analyzer will be used to determine O₂ and CO₂ concentrations during the particulate sampling. The instrument has a nondispersive infrared-based detector and operated in a range of 0% to the high-level span calibration gas.

A list of calibration gases that are used and the results of all calibration and other required quality assurance checks will be found in the Appendix of the final report. Copies of calibration gas certifications will also be found in the Appendix of the final report.

Method 10 Carbon Monoxide (CO) Determination

The Method 10 test procedure is used to determine the carbon monoxide (CO) concentrations. A continuous gas sample is extracted from a sampling point and analyzed for CO content using a nondispersive infrared (NDIR) analyzer. The gas stream is conditioned by condensing moisture and filtering particulate prior to the analyzer utilizing a straight extractive system. This instrument employs an internal gas correlation filter wheel that eliminates potential detector interference. Instruments so equipped do not require the use of an interference removal trap.

After an appropriate warm-up time, the analyzer is calibrated using calibration gases at concentrations corresponding to approximately 50, and 90% of the applicable source span, with a CO free calibration gas used as a zero gas.

The analyzer calibration is verified with the mid-range and zero gases after each test run.

A twelve point stratification test will be performed during run one to determine the number of test points for the ensuing two runs as described in USEPA Method 7E, 40CFR60, Appendix A.

A list of calibration gases that are used and the results of all calibrations will be presented in the Appendix of the final report. Copies of calibration gas certifications will also be appended to the final report.

Method 7E Nitrogen Oxides Determination

Stack gas nitrogen oxide concentrations and emission rates are determined in accordance with Method 7E, 40CFR60, Appendix A. A Thermo Environmental nitrogen oxide analyzer is used to determine nitrogen oxide concentrations, in the manner specified in the Method.

Stack gas is delivered to the analyzer via a Teflon sampling line, heated to a minimum temperature of 250 °F. Excess moisture in the stack gas is removed using a refrigerated condenser. The entire system is calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run. A molybdenum converter is used in order to convert nitrogen oxide to nitrogen dioxide, for analytical purposes, without converting any other chemically-bound nitrogen species, such as ammonia, that might be present in the gas stream.

A 12-point stratification test will be performed during run one. The results of the stratification test will be used to determine sampling points required for the test location in accordance with Method 7E, 40CFR60, Appendix A.

A list of calibration gases used and the results of all calibration and other required quality assurance checks will be found in the Appendix of the final report. Copies of calibration gas certifications will also be found in the Appendix of the final report.

Method 26 Hydrogen Chloride (HCI) Determination

Hydrogen chloride concentrations and emission rates will be determined in accordance with Method 26. An Environmental Supply Company, Inc. sampling train will be used to sample stack gas, in the manner specified in the Method. A single-point sample will be extracted from the gas stream and passed through dilute (0.1 N) sulfuric acid. In the dilute acid, the HCl will dissolve and form chloride (Cl) ions. The chloride ions will then be analyzed by ion chromatography. The sample train consists of a Teflon® filter placed on the inlet of a heated borosilicate glass probe liner, a heated 3-way valve, and five midget impingers. The first two impingers contain the dilute sulfuric acid, the second two impingers contain a 0.1 N sodium hydroxide (NaOH) scrubber solution to remove any remaining chlorine, and the fifth impinger contains silica gel to absorb any remaining moisture. Prior to sampling, the probe and filter will be purged for 5 minutes at a 2-liter/min rate. The sample is then extracted at a flowrate of 2 liter/min. A DI rinse will be performed on each set of two impingers, and samples are stored in Nalgene sample containers for transport. All of the equipment used is calibrated in accordance with the specifications of the Method.

Method 30B Mercury Determination (Sorbent Trap Method)

Paired trains will be utilized using three test points at the Unit 1 Baghouse Outlet Duct test location.

Per Method 30B sampling, each sample will be collected on the paired in-situ sorbent traps. A tube of silica is used to capture remaining moisture prior to the sample reaching the gas metering system.

The sample train used for this test program is designed by APEX, Inc. and meets all requirements for Method 30B sampling. Samples will be analyzed utilizing an Ohio Lumex, Inc. analyzer for mercury concentration.

Method 5 Particulate Matter Determination

A total of 24 test points using two ports at the Siloxane Flare test location will be sampled.

Particulate matter will be sampled in accordance with reference test USEPA Method 5, 40CFR60, Appendix A. The particulate matter sampling train is manufactured by Graseby/Nutech Corporation of Durham, North Carolina and meets all specifications required by Method 5. A glass-lined probe is used. Drawings depicting the sampling ports, test point locations, and sampling trains are appended to this protocol. Velocity pressures are determined simultaneously during sampling with a calibrated S-type pitot tube and inclined manometer. All temperatures are measured using K-type thermocouples with calibrated digital temperature indicators. The probe and filter temperatures will be maintained at 250 degrees F during the test program.

The quartz glass filter media are Whatman QMA 1851-082. All sample contact surfaces of the train are washed with HPLC reagent-grade acetone. These washes are placed in sealed and marked containers for analysis.

All sample recovery is performed at the test site by the test crew. All final particulate sample analyses are performed by Mostardi Platt personnel at the laboratory in Elmhurst, Illinois. Copies of all sample analysis sheets, explanations of nomenclature and calculations, and raw field data sheets are appended to this protocol.

Method 202 Condensable Particulate Determination

Stack gas condensable particulate concentrations and emission rates will be determined in accordance with the Method 202, in conjunction with Method 5 or 201A filterable particulate sampling. Condensable particulate matter is collected in the impinger portion of the sampling train.

The condensable particulate matter (CPM) is collected in impingers after filterable particulate material is collected utilizing Method 5 or 201A. The organic and aqueous fractions are then taken to dryness and weighed. The total of all fractions represents the CPM. Compared to the December 17, 1991 promulgated Method 202, this Method includes the addition of a condenser, followed by a water dropout impinger immediately after the final heated filter. One modified Greenburg Smith impinger and an ambient temperature filter follow the water dropout impinger. A schematic of the sampling train configured with these updates is found in the Appendix.

CPM is collected in the water dropout, modified Greenburg Smith impinger and ambient filter portion of the sampling train as described in this Method. The impinger contents are purged with nitrogen (N_2) immediately after sample collection to remove dissolved sulfur dioxide (SO_2) gases from the impingers. The impinger solution is then extracted with DI water, acetone, and hexane. The organic and aqueous fractions are dried and the residues weighed. The total of the aqueous, organic, and ambient filter fractions represents the CPM. A field blank will be collected.

7.0 QUALITY ASSURANCE PROCEDURES

Mostardi Platt recognizes the previously described reference methods to be very technique oriented and attempts to minimize all factors that can increase error by implementing its Quality Assurance Program into every segment of its testing activities.

Calculations are performed by computer. An explanation of the nomenclature and calculations along with the complete test results will be appended in the final report. Also to be appended are the calibration data and copies of the raw field data sheets. Analyzer interference data is kept on file at Mostardi Platt.

Dry gas meters are calibrated according to methods described in the Code of Federal Regulations. The dry test meters measure the test sample volumes to within 2 percent at the flowrate and conditions encountered during sampling.

APPENDIX

EQUAL AREA TRAVERSEFOR RECTANGULAR DUCTS

(Gaseous Stratification Test)

Job: University of Iowa

Oakdale Renewable Energy

Plant

Date: 5/17/12

Area: 19.25 Square Feet

Test Location: Hurst Boiler Exhaust Duct

No. Test Ports: 5

Length: 5.5 Feet

Tests Points per Port: 4

Width: 3.5 Feet

EQUAL AREA TRAVERSEFOR RECTANGULAR DUCTS

(Particulate Test)

†	X	×	X	X	X
8 = 2	×	X	X	X	×
0.51	X	X	X	X	х
3.5'	X	X	X	X	X
	Х	X	X	X	X
↓ ·		Sec. No. 1	Distriction of the Control of the Co	1000	200
•	=		- 5.5'		

Job: University of Iowa

Oakdale Renewable Energy

Plant

Date: 5/17/12

Area: 19.25 Square Feet

Test Location: Hurst Boiler Exhaust Duct

No. Test Ports: 5

Length: 5.5 Feet

Tests Points per Port: 5

Width: 3.5 Feet

USEPA Method 3A, 7E, and 10 Extractive Gaseous Sampling Diagram

USEPA Method 2 - S-Type Pitot Tube Diagram

USEPA Method 5 - Particulate Matter Sample Train Diagram

Ice Bath
Temperature
Sensor

USEPA 202- Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources

USEPA Method 26 – Halogen Sample Train Diagram

Ice Bath
Temperature
Sensor

USEPA Method 30B – Typical Mercury Sorbent Trap Sampling System

Particulate Nomenclature

A = Cross-sectional area of stack or duct, square feet

An = Cross-sectional area of nozzle, square feet

B_{ws} = Water vapor in gas stream, by volume

C_a = Acetone blank residue concentration, g/g

Cacf = Concentration of particulate matter in gas stream at actual conditions, gr/acf

C_p = Pitot tube coefficient

C_s = Concentration of particulate matter in gas stream, dry basis, corrected to standard conditions, gr/dscf

IKV = Isokinetic sampling variance, must be 90.0 % ≤ IKV ≤ 110.0%

M_d = Dry molecular weight of gas, lb/lb-mole

M_s = Molecular weight of gas, wet basis, lb/lb-mole

M_w = Molecular weight of water, 18.0 lb/lb-mole

ma = Mass of residue of acetone after evaporation, grams

P_{bar} = Barometric pressure at testing site, inches mercury

P_g = Static pressure of gas, inches mercury (inches water/13.6)

 P_s = Absolute pressure of gas, inches mercury = P_{bar} + P_g

P_{std} = Standard absolute pressure, 29.92 inches mercury

Q_{acfm} = Actual volumetric gas flow rate, acfm

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscfh

R = Ideal gas constant, 21.85 inches mercury cubic foot/°R-lb-mole

T_m = Dry gas meter temperature, °R

T_s = Gas temperature, °R

T_{std} = Absolute temperature, 528°R

V_a = Volume of acetone blank, ml

Vaw = Volume of acetone used in wash, ml

Wa = Weight of residue in acetone wash, grams

 m_n = Total amount of particulate matter collected, grams

 V_{1c} = Total volume of liquid collected in impingers and silica gel, ml

V_m = Volume of gas sample as measured by dry gas meter, dcf

V_{m(std)} = Volume of gas sample measured by dry gas meter, corrected to standard conditions, dscf

v_s = Gas velocity, ft/sec

 $V_{w(std)}$ = Volume of water vapor in gas sample, corrected to standard conditions, scf

Y = Dry gas meter calibration factor

ΔH = Average pressure differential across the orifice meter, inches water

 Δp = Velocity head of gas, inches water

 ρ_a = Density of acetone, 0.7855 g/ml (average)

 ρ_w = Density of water, 0.002201 lb/ml

 θ = Total sampling time, minutes

 $K_1 = 17.647 \,^{\circ}\text{R/in. Hg}$

 $K_2 = 0.04707 \text{ ft}^3/\text{ml}$

 $K_4 = 0.09450/100 = 0.000945$

Pitot tube constant,

K_p =

%EA = Percent excess air

%CO₂ = Percent carbon dioxide by volume, dry basis

%O₂ = Percent oxygen by volume, dry basis

%CO = Percent carbon monoxide by volume, dry basis

 $%N_2$ = Percent nitrogen by volume, dry basis

0.264 = Ratio of O_2 to N_2 in air, v/v

28 = Molecular weight of N2 or CO

32 = Molecular weight of O₂

44 = Molecular weight of CO₂

13.6 = Specific gravity of mercury (Hg)

Particulates Calculation Formulas

$$\text{1. } V_{\text{w(std)}} = V_{\text{lc}} \! \left(\frac{\rho_{\text{w}}}{M_{\text{w}}} \! \right) \! \! \left(\frac{RT_{\text{std}}}{P_{\text{std}}} \right) = K_2 V_{\text{lc}}$$

2.
$$V_{m(std)} = V_m Y\left(\frac{T_{std}}{T_m}\right) \left(\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{P_{std}}\right) = K_1 V_m Y\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_m}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d (1 - B_{ws}) + 18.0 (B_{ws})$$

6.
$$C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

8.
$$C_{acf} = 15.43 K_i \left(\frac{m_n P_s}{V_{w(std)} + V_{m(std)} T_s} \right)$$

9.
$$C_s = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_s M_s}}$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1 - B_{ws}) v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right) A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14. IKV =
$$\frac{T_s V_{m(std)} P_{std}}{T_{std} v_s \theta A_n P_s 60 (1 - B_{ws})} = K_4 \frac{T_s V_{m(std)}}{P_s v_s A_n \theta (1 - B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5 \%CO)}{0.264 \%N_2 - (\%O_2 - 0.5 \%CO)}\right) \times 100$$

Derivation of Factors Used in Carbon Monoxide and Nitrogen Oxides Calculations

Factors for calculating from lb/dscf to parts per million:

Using 22.414 liters of gas per gram-mole at 0°C and 1 atmosphere pressure,

One pound-mole of gas is contained in 359.04765 ft³ at 32°F and 29.92 in. Hg, or 385.31943 ft³ at 68°F and 29.92 in. Hg

ppm =
$$\frac{\text{M lb/lb-mole}}{385.31943 \text{ dscf/lb-mole} \times 10^6}$$
 = 2.5952494 × 10⁻⁹ M lb/dscf

Where M = pollutant molecular weight; CO = 28.01 lb/lb-mole; and NO₂ = 46.0055 lb/lb-mole

Factor for ppm CO =
$$\frac{1}{28.01 \times 2.5952494 \times 10^{-9}}$$
 = 1.3762 × 10⁷ dscf/lb Use 1.3762 × 10⁷

Factor for ppm NO_x =
$$\frac{1}{46.0055 \times 2.5952494 \times 10^{-9}}$$
 = 8.3755 × 10⁶ dscf/lb Use 8.3755×10⁶

Factors for calculating concentration as pounds per dry standard cubic feet:

Factor for
$$C_{co} = \frac{28.01 \text{ grams/gram-mole}}{2\frac{\text{gram-equivalents}}{\text{gram-mole}} \times 1000 \frac{\text{gram-milliquivalents}}{\text{gram-equivalent}} \times 453.592 \frac{\text{grams}}{\text{lb}}$$

=
$$3.087577 \times 10^{-5}$$
 lb/g - meq Use 3.0876×10^{-5}

Factor for C
$$_{NO_2}$$
 as $NO_2 = \frac{28316.846 \text{ ml/scf}}{4.53592 \times 10^8 \text{ } \mu\text{g/lb}} = 6.242801 \times 10^{-5} \frac{\text{lb/scf}}{\mu\text{g/ml}} \frac{\text{Use } 6.2428 \times 10^{-5}}{\text{pg/ml}}$

ppm Conversion Calculations and Factors

ppm to lbs/scf

(ppm X) x (conversion factor X) = X lbs/scf

lbs/scf to lbs/hr

Dry ppm's with dry flow, and wet ppm's with wet flow.

(X lbs/scf) x (airflow scf/min) x (60 min/hr) = X lbs/hr

lbs/scf to lbs/mmBtu

Dry ppm's with dry diluent, and wet ppm's with wet diluent.

 CO_2 – (X lbs/scf) x (F_c) x (100/CO₂) = X lbs/mmBtu

 $O_2 - (X \text{ lbs/scf}) \times (F_d) \times (20.9/(20.9-O_2)) = X \text{ lbs/mmBtu}$

Conversion Factors

 $NO_x - 1.19396 \times 10^{-7}$

 $CO - 7.2664 \times 10^{-8}$

Calculations for Hydrogen Chloride by Method 26A

Concentration

$$\frac{\text{lb HCl}}{\text{dscf}} = \frac{\mu \text{g HCl in sample}}{4.536 \times 10^8 \times \text{dscf}}$$

where:

$$4.536 \times 10^8 = \mu g/lb$$

dscf = Volume of gas sampled

$$\mu$$
g/lb HCl = μ g Cl × $\frac{36.453}{35.453}$

Parts Per Million

ppm HCl =
$$\frac{\text{lb HCl}}{\text{dscf}} \div \frac{36.453}{385 \times 10^6}$$

where:

385 = Volume of 1 lb mole of gas at 68°F and 29.92 in. Hg
$$10^6$$
 = Conversion of ppm v/v

Emission Rate

Ib $HCI/dscf \times dscfm \times 60 min/hr = Ib/hr HCI$

Mercury Sample Calculations

Concentration

$$\frac{\text{ng}}{\text{m}^3} = \frac{\text{ng of mercury}}{\text{dscf volume sampled} \times 0.02832 \, \frac{\text{m}^3}{\text{ft}^3}}$$

Emission Rate

$$\frac{\text{ng of sample} \times \frac{1 \times 10^{-9} \text{ grams}}{\text{ng}}}{453.6 \text{gr/lb}} = \text{lbs of mercury}$$

$$\frac{\text{lbs of mercury}}{\text{Vm (std) sample}} \times \text{dscfm} \times 60 \ \frac{\text{min}}{\text{hr}} = \text{lbs of mercury/hr}$$

Procedures for Calibration

Nozzles

The nozzles are measured according to Method 5, Section 5.1

Dry Gas Meters

The test meters are calibrated according to Method 5, Section 5.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.

Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to the specification described and illustrated in the *Code of Federal Regulations*, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 4; and the pitot tube assemblies are in compliance with specifications in the same section.

Dry Gas Meter Calibration Sample Train Diagram

Dry Gas Meter No.	CM-1	Date:	
Standard Meter No.		Calibrated By:	
Standard Meter (Y)		Barometric Pressure:	

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter			- 111	
	Setting in H₂O	Gas Volume	Gas Volume	Temp. F°	Inlet Temp. F°	Dutlet Temp. F°	Avg. Temp. F°	Time	Time		
Run Number	Chg (H)	vr	vd	tr	tdi	tdo	td	Min	Sec	Y	Chg (H)
Final											
Initial							1				
Difference 1	0.20										
Final											
Initial		1							90.4	A 47 3	
Difference 2	0.50										
Final											
Initial	Av. a		0.19	ATT IN		-united of	Language Co.		- 0	- 00	
Difference 3	0.70										
Final			l.,								
Initial							j l			1	
Difference 4	0.90										
Final						-			100		
Initial	_										
Difference 5	1.20				1575						
Final											
Initial		1,111,111			- 1-2-11				154		
Difference 6	2.00										

<u>Average</u>

Stack Temperature Sensor Calibration

Meter Box #: CM-1	Name :
Ambient Temperature :°F	Date :
Calibrator Model # :	
Serial #:	
Date Of Certification :	
Bringer Standards Directly Transpla National Instit	tute of Standards and Tachnology (NIST)

Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0		0.0
250		0.0
600		0.0
1200		0.0

(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) * $_{100}$ <= 1.5 % Ref. Temp., °F + 460

Nozzle Calibration Sheet PM 2.5 Set #1

Nominal Diameter	0.128	0.138	0.154	0.170	0.186	0.200			Other
Nozzle Diameter	.128	0.138	.154	0.174	0.186	.200			
Nozzle Identification Number	1-1	1-2	1-3	1-4	1-5	1-6		p	

S TYPE PITOT TUBE INSPECTION FORM

Calibration required? _____yes ___x __no

Pitot Tube No:	1	Date:	Insp	ectors Name:	
	8	A 9	LONGI	UDINAL B FLOW	
		A-SIDE PLANE		B FLOW	
	LONGITUDINAL DI	B PB PA	P ₁ <1.50 D = P _B	A Can	
	0.48 CM <d<sub>1 (3/16 IN.)</d<sub>	≤0.95 CM B-3/02 (CARE (3/8 IN.)		√B)	
				A)#1	
	V A	TRANSVERSE TUBE AXIS	***	Z .	
		FACE — OPENING- PLANES			
R 200		PLANES			
		at a2			
		TRANSVERSE AXIS A E			
		INSE AND LALE		A	
Pitot tube assem	ibly level?	x yesno			
Pitot tube openin	gs damaged?	yes (explain below)	<u>x</u> no		
a ₁ = _	1 ° (<10°),	a ₂ = o (<10°)	z = A sin g =	0.008 (in.); (<0.125 in.)	
b ₁ =	0 ° (<5°),	b ₂ = 2 ° (<5°)	w = A sin q =	0.025 (in.); (<0.03125 in.)	
γ=	0.5 ο, θ=	1.5 °,A = 0.938 (in.)	$P_A = 0.477$ (in.), P _B = 0.477 (in.), D _t =	0.375 (in.)

CALIBRATION SUMMARY

Project Number:	Date:	
Client:	Operator:	
Test Location:	Box Truck:	

Analyzer Type, S/N, and Span	Cal Level	Cylinder ID Serial Number	Expected Cal Value	Actual Response	Difference As % of Span	Cylinder Pressure (psi)	Cylinder Expiration Date
NO _x	Zero	S. marth	1 977- 3	1 20	Ness pulliphe		1,300
	Mid						THE ROLL OF
	High			1			
SO ₂	Zero						- 1-1
	Mid				= 1		- 11
	High	1		1 -		7-	
O ₂	Zero		7				
	Mid				and and		
	High				n n		

Gaseous Calibration Summary

Project:	Date:
Client:	Operator:
Location:	Analyzer ID:
	Analyzer Range:

Cal Run	Cal Level	Test Location	Cylinder ID Serial Number	Cal Gas Type	Cal Time	Expected Cal Value	Actual Response	Difference (% of cal value)	Drift (% of span)	Cylinder Pressure
	Zero	K 10							N/A	
Pre 1	Low				0		1	4	N/A	
	Mid			-		1		- 13	N/A	
	High					1	,	15	N/A	
	Zero	= =	= 4	= =			1		-	
Post 1/	Low						- = =			
Pre 2	Mid		1.							
	High	I						II. y		
	Zero	#I						1 1	1, "	=
Post 2/	Low			-	-1-					
Pre 3	Mid									
	High									
	Zero									
Post 3	Low									
	Mid									
	High									
	Zero									
	Low					2.2				
	Mid				·					
	High									
	Zero									
	Low									=
	Mid									
-11	High			0.00				11		

Method 30B Chain of Custody

: Test Location:									
	N		Carbon Trap I	ID: <u> </u>	DL10956				
QA/QC Signature									
Sampling Console Ser#									
				Leak Check Pass/Fail					
DUCT Temp (°F or °C)	Meter Temp (°F or °C)	Flow Rate (cc/min)	Dry Gas Meter Liters Initial	Dry Gas Meter Liters Final	Comments				
=		- 5	= == =						
				1	Va III				
			06 17 1 18						
	Cł	nain of Cus	stody						
	L :			Data					
Date:oratory by: Date:									
	DUCT Temp (°F or °C)	Leak Check Pass/Fail DUCT Meter Temp (°F or °C) (°F or °C) CI	Leak Check Text Pass/Fail (Date of Custing Pass/	Carbon Trap QA/QC Signa Sampling Cor Leak Check Pass/Fail DUCT Temp Temp (°F or °C) (°F or °C) Chain of Custody	Carbon Trap ID:				

For Analysis contact us at 330-405-0837 Ohio Lumex Co., Inc. 9263 Ravenna Road Unit A-3, Twinsburg, OH 44087 USA 330-405-0837 FAX 330-405-0847 US Toll Free: 888-876-2611

Impregnated Activated Carbon – Refer to MSDS Deactivated glass and glass wool

GASEOUS FIELD DATA SHEET

Project	Number:					D	ate:	-		H - 1 J-15
Client:		_		I Hala		c	perator	: -		WILLIAM I
Test Lo	cation:	_		185						
		_		Har.	1517			-		n in in the
	Tin	ne	Veiz	Refere	nce Method	Data			umetric F	
Test	Start	End	NO	_x ppm	CO ppm	O ₂ %	Time	scfh, F	RM Data	scfh, CEM Data
	dagg				H 一手 坦コ		15	- T		HE IST
					THE THE L	1		4	NI .	os ur Tre girli
										1
			_				ļ		_	
	-					782				1 -
-										
		-								
-							-			
			+			<u> </u>	 	-		
		-	+				+-			
-			+							
-	-		_				-	_		
-		_		·			-			
		_	=							
		_		-		_				
		Calibrati	on Co	rrected	RM Data			1		
Test	NO _x ppr	n CO	ppm	O ₂ %						
					1315	3	- 164 ^W			
				===	-					
	-									- 1787-1787-
	E						_			
-				 - -						
				-			-			
					1			2 /61	- 1 -	- C - 19 8 A I
	1.0									

Volumetric Flow Rate Determination Field Data Sheet

necks
$\sqrt{\Delta P}$ Null Point Angle, Degrees

M26 HYDROGEN CHLORIDE FIELD DATA SHEET

SamplingLoc	/Number: ation:														
Dry Gas Met	er No	2.5 7	Y=_		Test Engineer:										
Test (Run) I Gas Temperat		°F Static I		sure (P _{bar})	in. Hg	Orsat Analysis %CO ₂	%O ₂								
Clock Time 24 hour	Meter Volume (V _m) ft ³ or L (Circle One)	Meter Gage Pressure (ΔH) in. H ₂ O	Meter Temp. (t _m) °F	Impgr. Outlet Temp °F	<u>Condensate</u>	Silica Gel or Train									
				-	mis (V _f)	grams (W _f)									
			at Milliant	2	mls (V _i)	grams (W _i)									
			17		mls	grams									
					× 0.04707 =	× 0.04715 =									
· -					ft³ [V _{wc(std)}] +										
					$\bigvee_{m(std)} = \underline{\qquad} ft^3$	= ft ³ [V _{w(std)}]									
				- 1	Water Vapor, proportion by vo	nluma									
	-				Leak Check:	B _{ws} =									
				1		Moisture correction factor: 1 - B _{ws} =									
-		· .			1										
Total Vol.					Comments:		,								
Average				(T _m)	°R										
Test (Run) Gas Tempera		Baı °F Static	ometric Pres Pressure	ssure (P _{bar)} _	In. Hg	<u>Orsat Analysis</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	_%O ₂								
Clock Time 24 hour	Meter Volume (V _m) ft ³ or L (Circle One)	Meter Gage Pressure (ΔH) In. H₂O	Meter Temp. (t _m) °F	Impgr. Outlet Temp °F	Condensate	Silica Gel or Train									
					mis (V _f										
				- 4	mis (V _i										
		,			mls										
					× 0.04707 =	ft ³ [V _{vero(std)}]									
					- r FA Mc(etg)1 .	$= \underbrace{\text{ft}^{3} \left[V_{w(std)} \right]}_{\text{ft}^{3}}$									
					V _{m(std)} = ft ³										
				161	Water Vapor, proportion by v	olume									
		-		 	Leak Check:	B _{ws} =									
					⊣	1									

$$V_{m(std)} = 17.64 V_{mY} \frac{P_{bar}}{T_{m}} + \frac{DH}{13.6}$$

Total Vol. Average

$$B_{ws} = \frac{V_{w(std)}}{V_{w(std)} + V_{w(std)}}$$

(T_m)

Comments:

Molsture correction factor:

1 - B_{ws} = _

MERCURY SORBENT TRAP FIELD DATA SHEET

ce Condition:			Te	etric Pressure: est Engineer:	
Gas Meter No		Y =	Tr	ap Number	
Sample Train A	1	2.1			
Clock Time	Stack Temp. °F	Sorbent Trap Temp. °F	Meter Temp. (t _m) °F	Meter Volume (V _m)	Meter Vacuum, "Hg
24 hour		,			<u>-</u>
	4	,			
,					
				Es. 1 1	
			· · · · · · · · · · · · · · · · · · ·		
Total/Average	A TI NO				
	Y =	Trap Number		Spike Val	ue
Gas Meter No.		Trap Number		Spike Val	ue
	3	113	Meter Temp.	3 11 3	E 1
Gas Meter No.		Sorbent Trap Temp.	Meter Temp.	Spike Val	ue Meter Vacuum, "Hg
Gas Meter No	Stack Temp.	Sorbent Trap	Meter Temp.	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.		Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.		Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,
Gas Meter No. Sample Train E Clock Time	Stack Temp.	Sorbent Trap Temp.	(t _m) °F	Meter Volume (V _m)	Meter Vacuum,

Isokinetic Sampling Cover Sheet Test Engineer: Test Technician:

						C 7						"Ha	"H ₂ O	RI	3		78		thod 3A		u
uc	Project Number:	Plant Name:	or Diameter:	Downstream Diameters:	Port Diameter:		Data	ΔH Value:	Train Type:	Filter Number/Weight:	Thimble Number/Weight:	Post-Test Nozzle Leak Check: @	Post-Test Pitot Leak Check:		Min/Point:	Sample Plane: Horizontal or Vertical	ž.		/Avg. Determined by: Method 3 or Method 3A	x Serial #:	Imp. Volume or Weight Gain:
Plant Information	Date:	Client Name:	Length: Width:	Upstream Diameters:	Port Length:	Source Condition:	Meter and Probe Data	Meter Y Value:	Pitot Coefficient:	Nozzle Diameter:	Probe Liner:	"Hg	"H ₂ O Post-Te	Traverse Data	Points/Port:	Total Test Time:	Stack Parameters	Static Pressure:	/		Final Imp. Volume or Weight:
	Run Number:	Test Location:	Duct Shape: Circular or Rectangular	Flue Area:	Port Type:	Test Method:		Meter ID:	Pitot ID:	Nozzle Kit ID	Probe Lenath:	Pre-Test Nozzle Leak Check:	Pre-Test Pitot Leak Check:	4	Ports Sampled:	Total Points:		Barometric Pressure:	CO ₂ %: / / Avg.	/or silica balance Model an	Initial Imp. Volume or Weight:

Post-Test Nozzle Verification:

Comments:

Isokinetic Sampling Field Data Sheet

	Test Tech:	of	
Test Number:	Operator:	Page Number:	
Date:	Test Location:	Test Method:	
Project Number:	Client:	Plant:	

Impinger Outlet Well Temp°F									3.5		2	
CPM Filter Temp. °F												
Probe Filter Temp. °F Temp. °F											į a	
Pump Vacuum, "Hg												
Meter Temp Outlet,				T4								
Meter Temp Inlet, °F	-			1.1								
Stack Temp,												
Theoretical Meter Volume, (V _m) ft³, total						:						
Theoretical Meter Volume, (V _m) ft³, per								1.0				
Meter Rate, Cubic Feet/		N						 				
Square Root, △P												
Meter Volume (Vm) ft³,												
Orifice Setting (△H)							=					
(∆P)												
Time	П											
Port-							(4)					

x = 2

ATTACHMENT 3

Fw: University of Iowa Boiler MACT Compliance Stack Testing

Lisa Hanlon to: Scott Postma

02/08/2013 03:09 PM

Scott:

FYI. Let me know if this is something you really want to observe.

Please note new address

Lisa Hanlon EPA Region 7 11201 Renner Blvd. Lenexa, KS 66219 913.551.7599 hanlon.lisa@epa.gov

----- Forwarded by Lisa Hanlon/R7/USEPA/US on 02/08/2013 03:06 PM -----

From:

"Maxwell, Mark W" <mark-maxwell@uiowa.edu>

To:

Lisa Hanlon/R7/USEPA/US@EPA

Cc:

"dennis.thielen@dnr.iowa.gov" <dennis.thielen@dnr.iowa.gov>

Date:

02/08/2013 03:04 PM

Subject:

University of Iowa Boiler MACT Compliance Stack Testing

Hello Lisa,

As I discussed with you on the phone, we are planning to do the Boiler MACT compliance testing for the Hurst biomass boiler (Permit # 78-A-023-S7) in March. This testing is currently scheduled for the week of March 24. March 25 will be the setup day with actual testing to follow on March 26 and 27. I have attached a protocol from Mostardi-Platt for the planned testing. Please let me know if you need additional information.

Thanks,

Mark Maxwell, P.E. Environmental Engineer University of Iowa Power Plant 319-335-6185

M131103.pdf

ATTACHMENT 4

Hurst Boiler Permit Maxwell, Mark W to:

Scott Postma 02/11/2013 12:56 PM Hide Details

From: "Maxwell, Mark W" <mark-maxwell@uiowa.edu>

To: Scott Postma/R7/USEPA/US@EPA

2 Attachments

Hurst TriMer.pdf Oakdale Permits.pdf

Scott,

I have attached the permit for the Hurst Boiler and some additional information on the boiler and Tri-Mer filter.

Thanks,

Postma, Scott

From:

Maxwell, Mark W [mark-maxwell@uiowa.edu]

Sent:

Friday, March 08, 2013 11:10 AM

To:

Postma, Scott

Cc:

Fish, Ben P; Kottenstette, Stephen D

Subject:

Tri-Mer UltraTemp Filtration

Attachments:

hot-gas-filtration.pdf

Scott,

Here is an additional brochure on the Tri-Mer UltraTemp Filtration process. Please note that we do not do SO2 or mercury control with our unit. Just PM and NOx control. Our fuels contain negligible amounts of sulfur and mercury.

For Boiler MACT purposes, the boiler falls in the category of "Stokers/sloped grate/others designed to burn wet biomass." The unit is currently only burning wood chips, or natural gas. We will just be burning wood chips during the stack testing.

Setup will be on March 25 with the start of testing planned for March 26. I will let you know if there are any changes to the schedule.

Thanks,

Stocking, St. or

Postma, Scott

From:

Maxwell, Mark W [mark-maxwell@uiowa.edu]

Sent:

Wednesday, April 03, 2013 1:08 PM

To:

Hanlon, Lisa; Postma, Scott

Cc:

'dennis.thielen@dnr.iowa.gov'; Bigger, Anthony [DNR] (Anthony.Bigger@dnr.iowa.gov)

Subject:

RE: University of Iowa Boiler MACT Compliance Stack Testing

Hello Ms. Hanlon,

As you are probably aware, the testing of the University of Iowa Hurst Boiler got delayed due to operational problems with the boiler. We would like to reschedule the testing for May 1 if that is acceptable to EPA. We will again use Mostardi-Platt and they will be setting up on April 30 and starting the testing on May 1. Let me know if this is not acceptable.

Thanks,

Mark Maxwell, P.E. Environmental Engineer University of Iowa Power Plant 319-335-6185

From: Maxwell, Mark W

Sent: Friday, February 08, 2013 3:04 PM

To: 'hanlon.lisa@epa.gov'

Cc: dennis.thielen@dnr.iowa.gov

Subject: University of Iowa Boiler MACT Compliance Stack Testing

Hello Lisa,

As I discussed with you on the phone, we are planning to do the Boiler MACT compliance testing for the Hurst biomass boiler (Permit #78-A-023-S7) in March. This testing is currently scheduled for the week of March 24. March 25 will be the setup day with actual testing to follow on March 26 and 27. I have attached a protocol from Mostardi-Platt for the planned testing. Please let me know if you need additional information.

Thanks,

Postma, Scott

From:

Maxwell, Mark W [mark-maxwell@uiowa.edu]

Sent:

Thursday, May 02, 2013 3:21 PM

To: Cc: Postma, Scott Hanlon, Lisa

Subject:

Hurst Boiler Testing Problems

Hi Scott,

I haven't been able to get a definitive answer on why they couldn't make the boiler stay on-line yesterday for the testing. We had been running the boiler for several days prior to the planned testing date. There was either a problem with the wood fuel that we received for the stack test, or the way they operated the boiler. Whatever it was, they couldn't keep the boiler lit when we needed it to work for the stack test. We will be contacting the Hurst company, and possibly bringing them back on-site, to get their guidance on what is going wrong. We have people with a lot of experience running coal and natural gas boilers, but a 100% wood boiler is fairly new to us. I apologize for bringing you all the way up here again for another failure. We really thought things were going well earlier in the week. After we regroup, and have talked to the manufacturer, we will be trying to test again. The initial boiler MACT compliance date for this unit is July 31, and we are still planning to meet that. I will keep you informed of our schedule as this unfolds.

Again, my apologies,

From:

Maxwell, Mark W [mark-maxwell@uiowa.edu]

Sent: To: Friday, June 21, 2013 3:42 PM Hanlon, Lisa; Postma, Scott

Subject:

RE: U of I Hurst Boiler Stack Testing update

Scott and Lisa,

I have the Hurst Boiler stack testing scheduled for the week of July 22. Setup on Monday, testing on Tuesday and Wednesday. Mostardi-Platt of Elmhurst, IL. will be the testing company. The scope of the testing and the protocol will be identical to the one I submitted earlier. Of course I will let you know if anything changes between now and then.

Thanks,

Mark Maxwell, P.E. Environmental Engineer University of Iowa Power Plant 319-335-6185

From: Hanlon, Lisa [mailto:Hanlon.Lisa@epa.gov]

Sent: Tuesday, June 18, 2013 2:20 PM **To:** Maxwell, Mark W; Postma, Scott

Subject: RE: U of I Hurst Boiler Stack Testing update

Mark:

Since IDNR has not had a chance to adopt the Boiler MACT yet, any noncompliance issues with it will go through EPA until it's adopted.

There isn't a mechanism under the MACT to grant variances, so any operation of the boiler after the compliance deadline without a successful test would be considered noncompliance with the rule. If the testing can't be successfully completed by the compliance deadline, one option we could consider a compliance order that would essentially put you on a schedule to conduct the test and continue to operate it. I don't want to get ahead of ourselves, so let's hope that the testing can be completed in time. In the meantime, keep in touch with your test schedule.

Lisa Hanlon
U.S. EPA Region 7
Air Permitting and Compliance
11201 Renner Blvd.
Lenexa, KS 66219
913-551-7599
hanlon.lisa@epa.gov

From: Maxwell, Mark W [mailto:mark-maxwell@uiowa.edu]

Sent: Tuesday, June 18, 2013 10:22 AM

To: Postma, Scott Cc: Hanlon, Lisa

Subject: RE: U of I Hurst Boiler Stack Testing update

Hi Scott,

I have a question about complying with Boiler MACT. If we are not able to complete the testing by the compliance date of July 30, what are our options for doing the compliance testing after that date? We would likely need to run the boiler at least a little, to get it ready for doing a compliance test. Would we need to request a variance to run the boiler enough to get it ready for a compliance test?

We are still trying to get Hurst in here to troubleshoot the boiler for us in the next few weeks. We would then try another stack test in the last few weeks of July. There is apparently some kind of snag between our purchasing department and theirs at this point. It has been more than a little frustrating but I am still confident we can get one more attempt in before the end of July.

Thanks,

Mark Maxwell, P.E. Environmental Engineer University of Iowa Power Plant 319-335-6185

From: Postma, Scott [mailto:Postma.Scott@epa.gov]

Sent: Wednesday, June 05, 2013 9:03 AM

To: Maxwell, Mark W Cc: Hanlon, Lisa

Subject: RE: U of I Hurst Boiler Stack Testing update

Thanks for the update.

Scott Postma, QSTO 1, 2, 3 Region VII, EPA 300 Minnesota Ave. Kansas City, KS 66101 (913) 551-7048

From: Maxwell, Mark W [mailto:mark-maxwell@uiowa.edu]

Sent: Wednesday, June 05, 2013 8:23 AM

To: Postma, Scott **Cc:** Hanlon, Lisa

Subject: U of I Hurst Boiler Stack Testing update

Hi Scott,

I just wanted to give you a quick update. We are still trying to arrange for someone from Hurst to come in and troubleshoot our boiler problems. Our purchasing department is not making it easy to get them a PO. I am still hopeful we can get Hurst in here sometime in June, and then do stack testing in July, but I still do not have a date. I'll keep you informed.

Thanks,

ATTACHMENT 5

PROPOSAL #2009-12-30-400-150

BIOMASS FIRED STEAM PLANT

400 HORSEPOWER / 13,800 PPH / 150 PSIG DESIGN / 135 PSIG OPERATING

FOR

University of Iowa - Oakdale Campus

lowa City, Iowa USA

P. Ferman Milster, P.E.
Associate Director – Utilities & Energy Management
University of Iowa
230 University Services Building
Iowa City, Iowa 52242-1922
Phone: (319) 335-5132
Email: ferman-milster@uiowa.edu

Coples to : edward-scherrer@uiowa.edu ehendrickson@shive-hattery.com

December 30, 2009

by

Global Energy Solutions, Inc.—Representative for Hurst Boiler & Welding Co., Inc.

GENERAL SPECIFICATIONS

1. Scope of Equipment: One (1) substoichiometric wet biomass fuel gasifier,

combustor and heat recovery system fed from

metering bin.

2. Gasifier Fuel Requirements: 1-1/2" x 2-1/2" x 5/8" or less in size, 50% or less in

moisture content and a BTU content of 4,347 BTU/lb

(minimum).

3. Approximate Fuel Usage at 400 BoHP = 3,245 lbs/hr & 18,342,400 BTU/Hr input

Maximum Firing Rate: @ 35% MC.

600 BoHP = 4,868 lbs/hr & 27,513,600 BTU/Hr input

@ 35% MC.

4. Boiler Rating: 400 BoHP, 13,800 PPH steam output from and @

212°F

600 BoHP, 20,700 PPH steam output from and @

212 F

5. Boiler Pressure: 150 PSI design pressure.

Maximum recommended operating

pressure is 135 PSI.

6. Boiler Design: Base: High Pressure HBC Hybrid,

Model #HY-2600-150 (400 BoHP) Model #HY-3900-150 (600 BoHP)

Built in accordance with the ASME Code.

ULTRATEMP HOT GAS FILTRATION SYSTEMS

Ceramic Fiber Technology Facilitates Advancement in Hot Gas Filtration

Tri-Mer Corporation, a developer of advanced technologies for the control of VOCs, fine particulate and industrial gases, has introduced "UltraTemp Filtration," a hot gas filtration system that filters fine particulate to extremely low levels. It also offers exceptional performance with dry scrubbing sorbent injection for the removal of acid gases.

Ceramic filter elements in the UltraTemp Filtration system for hot gas filtration.

UltraTemp waste incinerator incorporating new ceramic filter elements. The cooling chamber is to the right of the filter plant.

The heart of the UltraTemp Hot Gas Filtration system is a new generation of ceramic filters. Earlier generations of ceramic filters – sometimes called "candle" filters – were manufactured from high-density granular powders similar to common ceramic products. While effective, they were brittle, with low thermal shock resistance, and were prone to cracking and breakage from thermal shock. Surface porosity also made cleaning of the filters difficult because of their tendency to "blind."

Now, with recent advances in ceramic technology, these issues have been overcome. The filters used in the Tri-Mer UltraTemp Filtration system are manufactured from a new generation of low-density ceramic fibers that provide exceptionally high resistance to thermal shock. This makes the filters very ductile and resistant to crack formation.

	A Charles A Committee of the Committee o	
Micrograph	of filter elemen	ts composition.

CHARA	CTERISTICS OF (LOW-DENSITY) CERAMIC ELEMENTS
Form	Monolithic rigid tube
Composition	Refractory fibers plus organic and inorganic binding agents
Porosity	About 80-90%
Density	About 0,3 - 0.4 g/cc
Support	Self supporting from integral flange
Geometry	Outer diameter up to 150 mm; Length up to 3 m

Characteristics of the fibrous ceramic filter elements.

Other unique properties of the fibers give the UltraTemp filters an exceptional ability to capture fine particulates at the surface, without blinding. They are thus easy to clean using standard pulse-jet techniques. Being fibrous, rather than granular, the filter elements are also lightweight, and have a low resistance to flow, which minimizes the number of elements required for a given application.

The UltraTemp Filtration system provides optimal filtration for gases between 400°F and 1000°F, and in most cases can be applied to hot gas streams up to a maximum operating temperature of 1650°F. Typical filtration results are 0.001 grain/dscf (2 mg/Nm3); many results are a fraction of this typical value.

	High Density	Low Density
Structure	Granular	Fibrous
Density	High	Low
Filter Drag	High	Low
Porosity, % (inverse of resistance to flow)	0.3 - 0.4	0.8 - 0.9
Tensile strength	High	Low
Fracture mechanism	Brittle	Ductile
Thermal shock resistance	Low	High
Cost	High	Low

Contrast between types of ceramic filter elements.

UltraTemp Filtration is compatible with heavy loadings, often above 1 grain/dscf (2300 mg/Nm3). Certain applications involving three or four times this loading at the inlet still achieve outlet levels of less the 0.001 grains/dscf. The ceramic filters are almost completely chemically inert and highly corrosion-resistant.

Applications of the Tri-Mer UltraTemp Filtration system include syngas cleaning, glass production, waste incineration, and biomass pyrolysis. UltraTemp Filtration is also an excellent way to achieve ICI boiler MACT compliance for coal, biomass, and wood. Other applications include metal smelting, mineral processing and chemical production.

The Tri-Mer UltraTemp Filtration system features an option for dry injection of calcium or sodium-based sorbents for the capture of acid gases. Injected in the duct upstream of the filter modules, the additional sorbent particulate is easily captured along with its pollutant gas. For these applications, SO₂ removal is typically 80% or better, with removal efficiencies as high as 97%. HCI removal is typically 95%, and often as high as 99%.

If the need is NO_X , VOC, or dioxin removal, UltraTemp filter elements are available with catalysts embedded in the filters themselves. Urea is then injected upstream of the filters. NO_X removal in these systems is typically above 90%. VOC oxidation and dioxin removal are also both exceptionally high. UltraTemp Filtration can incorporate both sorbent injection and catalyst reduction in a single system. Acid gases, such as SO_2 , and NO_X can be simultaneously removed in the same system.

Tri-Mer's UltraTemp Hot Gas Filtration system uses a baghouse configuration with a reverse pulse-jet cleaning action. The filters are back-flushed with air, inert gas, syngas, or other appropriate gases. It has a reliable sealing mechanism that is easy to access, and the design has been engineered for easy installation and maintenance. Filter elements are manufactured in various sizes, the largest of which is ten feet long and six inches in diameter, including an integral mounting flange.

Reverse pulse jet cleaning mechanism for the filter elements.

Filter element housing module of the Tri-Mer UltraTemp Filtration system.

The UltraTemp Filtration system is an efficient, proven alternative for hot gas filtration. With over 200 applications worldwide, it is now commercially available throughout the US, with full technical and start-up support.

Selected Applications

- Syngas cleaning
- Glass production
- Waste incineration
- Waste pyrolysis
- Boiler MACT compliance for coal, biomass, wood
- Metal smelting, mineral processing
- Chemical production
- Many specialized high temperature applications

Tri-Mer Corporation, a technology leader in air pollution control, is the exclusive manufacturer of the UltraTemp Filtration system, and provides turnkey engineering, manufacturing, installation, and service through its Michigan facility.

For more information, contact Kevin Moss, Tri-Mer Business Development Director, Advanced Technologies. Direct line: (801) 294-5422, or kevin.moss@tri-mer.com

CORPOPATION Air Pollupon Control Systems

University of Iowa Process Flow Diagram University of Iowa Physical Plant 28 mmbtu/hr

Air Flow, Induced draft Liquid Flow, pressurized Liquid Flow, gravity

Utility Summary
Power TBD kW
Ures 0.5 gph

1400 E. Marroe Street Owerso, MI 48867 ph (989) 723-7844 far (989) 723-7844 www.tri-msr.com

ATTACHMENT 6

MULTI METHOD NON-ISOKINETIC FIELD DATA SHEET

Project	Name/Number:	MI	33003	- · ·			Date:	7/2	3/13	
Test Lo	cation:	v. pt]	DWW				Source (Condition		
Test Me	ethod:	6	Mator V	Mete	r ID:	Toet	Pre-Calibration	on Date:	6/19/13	
Test (Run) No.	- 3			Pressure (Pba					Gas Sample Analysis	
Static Pressure	e: -0,1	_ Stack Temp	erature: 3	63	(From Meth		_ Test Data)		%CO ₂ %C	2
Clock Time	Meter Volume	Meter Gage	Meter Inlet	Meter Outlet	Impinger Outlet	Meter Vacuum				
	ft ³ or D	Pressure	Temp.	Temp.	Temp	"Hg	Condensate		Silica Gel or Train	
24 hour	(Circle One)	(∆H) in. H₂O	(t _m) °F	(t _m) °F	°F		, N			
14:55	00.00	V	42			U	mls ((V _f)	grams (W _i)
15:00	10.163	2.0	42			-2.5	mls	(V _i)	grams (W _i)	
15:05	20.135	2.0	92			-2.5	(+	iained		
15:10	30.075	2.0	92			-21.5	ms g	James	gramo gam	
15:15	40.256	2.0	92		<u> </u>	-2.5				
15:20	50.145	2.0	92			-3				
15125	60.045	2.0	92			-3	1		erature: 92	
15:30	70.383	2.0	92			.3	Average Met	er Temp	erature: / 6	_
15:35 15:40	90.054	2.0	92			-3	(average of b	oth inlet a	ind outlet if applicable)	
15.45	100.037	3.0	9)			-3	-			
15:50	110.567	2.0	92			-3	1			
15.55	120.248		92				1 -			
	0 - 0 - 12									
Total Vol.	4-247	Multiply total	l volume colle	ected in Liters	s by 0.03531	5 to				
in ft³ (V _m) ₌		CONVENTION				CARL TO A STATE OF THE STATE OF	Pre-Test Leak Check:		Post-Test Leak Check;	
							0K@ 10	"Ha	OK@ 10 "Hg	
Test (Run) No).		Barometric	Pressure (Pb	nar)		in. Hg		Gas Sample Analysis	
1	re:		perature:				Test Data)		%CO2%	O ₂
	Meter Volume	Meter	Meter	Meter	Impinger	Meter				
Clock Time	ft ³ or L	Gage	Inlet	Outlet	Outlet Temp	Vacuum "Hg				
24 hour		Pressure (ΔH) in.	Temp. (t _m)	Temp.	°F	l ''g	Condensate		Silica Gel or Train	
	(Circle One)	H₂O	°F	°F			-			
				ļ <u> </u>			mls	(V_f)	grams (V	√ ₁)
		 						(V _i)	- grams (V	
			-	<u> </u>	-	-	-		= grams gai	
ļ			-	+	+	-	=mins	gained	grams gu	
		1	+	1	-		1			
							Average Me	ter Tem	perature:	
									and outlet if applicable)	
			†							
				United to 1.7	== by 0.0252	15 to	-			
Total Vol. in ft ³ (V _m) ₌		Multiply to convert to	tal volume co	nected in Lite	is by 0.0353	1310				
Comments:		1 -2					Pre-Test Leak Check	C	Post-Test Leak Check:	
							@	"Hg	@"t	Hg
										_

MOSTARDI PLATT

IMPINGER WEIGHT SHEET

PLANT: UNIVERSITY
UNIT NO: HURST BOILER
LOCATION: EXHAUST DUCT
DATE: 7/23/13
TEST NO: 3
METHOD: 5/202
WEIGHED/MEASURED BY: JFR
BALANCE ID: 5/0 - 36

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
MPINGER 1	857,6	535.8		BLANK
MPINGER 2	5 94.6	584.7		BLANK
MPINGER 3	6.93.7	892,4		01 420
IMPINGER 4	833.7	813.4	5 0 0 0 0 0 0 0 0	SILICA
IMPINGER 5		September 1	B CONTRACTOR OF THE PARTY	
IMPINGER 6	GHE 9	A COMPANY		
IMPINGER 7				
IMPINGER 8				

IMPINGERS	2145,9 FINAL TOTAL	1814.9	TOTAL IMPINGER GAIN
SILICA	5337	613. 4	フック TOTAL SILICA GAIN

1424

MOSTARDI PLATT

IMPINGER WEIGHT SHEET

UNIT NO: HURST BOILER

LOCATION: EXHAUST BOILER

DATE: 7/23/13

TEST NO: 2

METHOD: 5/202

WEIGHED/MEASURED BY: JFR

BALANCE ID: 5/0-36

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	816.3	587,9		BLANK
IMPINGER 2	653,1	652.0		BLANK
IMPINGER 3	689.1	689.5		01420
MPINGER 4	837.4	820. 5	820,5	SILICA
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

853.4

IMPINGERS 2158,5 1929,4 229,1
FINAL TOTAL INITIAL TOTAL IMPINGER GAIN

SILICA 837, 4 820,5 16,9
FINAL TOTAL INITIAL TOTAL TOTAL SILICA GAIN

3 2

Plant Information		Client Name:	_ 	Upstream Diameters: Downstream Diameters:	Port Length: 6 " Port Diameter: 6 "	Source Condition:	
Plant I		Test Location: BorceR ourceT DOCT Client Name: www.ck	Circular or Rectangular	19,250	F6A~66	5/202	
	Run Nu	Test Lo	Duct Shape:	Flue Area:	Port Type:	Test Method:	

		Meter	Meter and Probe Data			
Neter ID: CM 6		Meter Y Value:	1.	ΔH Value: /,		
itot ID: 203		Pitot Coefficient: つ. 8ಳ	0.840	Train Type: Hot Box	30×	
Jozzle Kit ID SS 4 7		Nozzle Diameter: , そ95	,495	Filter Number/Weight:	Filter Number/Weight: 6/0 / / 0 / 4/6 2/6	
robe Length: 4		Probe Liner: 6 6	.ASS	Thimble Number/Weight:		
re-Test Nozzle Leak Check: 6,005	500	@ /C "Ha	"Hg Post-Test Nozzle Leak Check:	eak Check:	@	
re-Test Pitot Leak Check:	(A)	, 2 "H,0	Post-Test Pitot Leak Check:	k Check:	O.H.	

	8	rizontal or Vertical
	Min/Point:	Sample Plane:(Horizontal or
raverse Data	5	125
	Points/Port:	Total Test Time:
	⟨S : P	25
	Ports Sample	Total Points:

Barometric Pressure: Co ₂ %: Avg. 10.7 Avg. 10.	Final Imp. Volume or Weight:
--	------------------------------

Comments:

Post-Test Nozzle Verification:

DS-004 Method 5 Cover Sheet

MULTI METHOD NON-ISOKINETIC FIELD DATA SHEET

Projec	t Name/Number		33003				Date:	_ 7/2	(5/15	
Test L	ocation:	1. OF	Ion-n				Source	Conditio	n: '	
l est N Meter	1ethod:∧∂ ΔH:	6	Motor V	Mete	er ID:	MIB A	Pre-Calibrate Engineer:		e: <u>6/19/13</u>	
Test (Run) No		_		Pressure (Pb	ar)	5	_in. Hg		Gas Sample Analysis	
Static Pressu	re: - 0. l	_ Stack Tem	perature: 3	60	_ (From Met	hod	Test Data)		%CO ₂	%O ₂
	Meter Volume	Meter	Meter	Meter	Impinger	Meter			-	
Clock Time	ft ³ or L	Gage	Inlet	Outlet	Outlet	Vacuum				
24 hour	ft or L/	Pressure (ΔH)	Temp.	Temp.	Temp °F	"Hg	<u>Condensate</u>		Silica Gel or Train	į
	(Circle One)	in. H ₂ O	رس/ ۴-	(t _m) °F	"					
12:05	20.00	12	89			U	mlo	(\/.\	arama A	(10)
12:10	10.103	2.0	84			-2	mls		grams (\	•
13:15	20.406	2.0	89			-2	mls	(V _i)	grams (V	V₁)
17:30	30.186	1.0	89			-2	=mls	gained	=grams g	ained
12:25	40.153	1.0	90			- 2	1			
17:30	50.417	1.0	90			-3	1			
12:35	60.395	2.0	96			-3				
1): 41/2	70.159	2.0	40			- 3	1		perature: 40	
12:45	80.290	2.0	90		 	-7	Average Met	er Temp	perature:	
12:50	90.315	2.0	91			-2	(average of t	ooth inlet	and outlet if applicable)	
12:55	100.189	2.0	91			-3	-			
13:00	110-358	1.0	91			-3	-			
13:05	120.406	2.0	91			-3	1			
13.03			lu.			->	-			
			3 -				-			
Total Vol.	(1) 10-1	Multiply tota	al volume colle	cted in Liters	by 0.03531	5 to	-			
in $ft^3(V_m)$ =	4.252	convert to f			•					
Comments:			7	1-7-7	14.15		Pre-Test Leak Check:		Post-Test Leak Check:	
								- 1		
11							at a 10	""	0 t @ 10 114	
Test (Run) No	. 2		Barometric F	Pressure (Ph	27.	}	ok @ 10	"Hg	OK @ /O "H	g
Test (Run) No Static Pressur	•	Stack Tem		Pressure (Pba	"/		_in. Hg	"Hg	Gas Sample Analysis	
11	e: <u>- D. l</u>		perature:	60	(From Meth	nod	_in. Hg	"Hg	Gas Sample Analysis	g %O₂
11	e: Meter Volume	Stack Temp			"/		_in. Hg	<u>"Hg</u>	Gas Sample Analysis	
Static Pressur Clock Time	e: Meter Volume	Meter Gage Pressure	Meter Inlet Temp.	Meter Outlet Temp.	(From Metr Impinger Outlet Temp	nod	_in. Hg _ Test Data) 	<u>"Hg</u>	Gas Sample Analysis%CO2	%O₂
Static Pressur	e: <u>- D. l</u>	Meter Gage Pressure (ΔH) in.	Meter Inlet Temp.	Meter Outlet Temp. (t _m)	(From Meth Impinger Outlet	Meter Vacuum	_in. Hg	"Hg	Gas Sample Analysis	%O₂
Static Pressur Clock Time 24 hour	Meter Volume (V _m) ft ³ Of () (Circle One)	Meter Gage Pressure (ΔH) in. H₂O	Meter Inlet Temp. (t _m)	Meter Outlet Temp.	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg	_in. Hg _ Test Data) 	"Hg	Gas Sample Analysis%CO2	%O₂
Static Pressur Clock Time 24 hour	e: -0.1 Meter Volume (V _m) ft ³ Or() (Circle One)	Meter Gage Pressure (ΔH) in. H₂O	Meter Inlet Temp. (t _m) °F	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg	_in. Hg _ Test Data) . <u>Condensate</u>	_	Gas Sample Analysis %CO2 Silica Gel or Train	%O₂ !
Static Pressur Clock Time 24 hour 13:35	e:	Meter Gage Pressure (ΔH) in. H ₂ O	Meter Inlet Temp. (t _m) °F	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg	_in. Hg _ Test Data)	(V _f)	Gas Sample Analysis %CO2 Silica Gel or Train grams (%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45	e: -0.1 Meter Volume (Vm) ft ³ Or() (Circle One) 00.00 10.167	Meter Gage Pressure (ΔH) in. H ₂ O J. υ	Meter Inlet Temp. (t _m) °F	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg	_in. Hg _ Test Data) Condensatemlsmls	(V _f) (V _i)	Silica Gel or Train grams (%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45	e: -0.1 Meter Volume (Vm) ft³ Or() (Circle One) 00.00 10.167 10.355 30.185	Meter Gage Pressure (ΔH) in. H ₂ O J. J. J. J. J.	Meter Inlet Temp. (I _m) °F 91 91	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg	_in. Hg _ Test Data) Condensatemlsmls	(V _f)	Gas Sample Analysis %CO2 Silica Gel or Train grams (%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55	e: -0.1 Meter Volume (Vm) ft ³ Or() (Circle One) 00.00 10.167 10.335 30.185 40.143	Meter Gage Pressure (ΔH) in. H ₂ O J. U J. U J. U	Meter Inlet Temp. ((t _m) °F 91 91 91	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg		(V _f) (V _i) gained	Silica Gel or Train grams (%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:50 13:55 14:00	e:	Meter Gage Pressure (ΔH) in. H ₂ O J. υ J. υ J. υ J. υ J. υ	Meter Inlet Temp. (tm) %F	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg"	_in. Hg _ Test Data) Condensatemlsmls	(V _f) (V _i) gained	Silica Gel or Train grams (%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:55 14:05 14:05	e:	Meter Gage Pressure (ΔH) in. H ₂ O J. υ J. υ J. υ J. υ J. υ	Meter Inlet Temp. (tm) °F 91 91 91 91 91 92 92 92	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" U	in. HgTest Data) mlsmlsmlsmls	(V _f) (V _i) gained	Silica Gel or Train grams (grams grams g	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:05	e:	Meter Gage Pressure (ΔH) in. H ₂ O	Meter Inlet Temp. (t _m) °F 91 91 91 91 91 91 91 91 91 9	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" -2 -3 -3 -3 -3 -3		(V _f) (V _i) gained	Silica Gel or Train grams (grams grams g	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:15	e: -0.1 Meter Volume (Vm) ft3 or() (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.184 80.449	Meter Gage Pressure (ΔH) in. H ₂ O J. U	Meter Inlet Temp. (tm) °F 91 91 91 91 91 91 91 91 91 91 91 91 91	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" -2 -3 -3 -3 -3 -3	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained	Silica Gel or Train grams (grams grams g	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:00 14:15 14:15	e: -0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.184 80.448 90.153	Meter Gage Pressure (ΔH) in. H₂O J. υ	Meter Inlet Temp. (Im) F 91 91 91 91 91 91 91 91 91	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg"	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:55 14:05 14:15 14:15	e:0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 20.335 30.185 40.143 50.210 60.257 70.184 80.244 90.153 100.018	Meter Gage Pressure (ΔH) in. H ₂ O J. U	Meter Inlet Temp. (tm) %F 91 91 91 91 92 92 92 92 92	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:15 14:15 14:15 14:25 14:30	e:	Meter Gage Pressure (ΔH) in. H ₂ O J. U J. U	Meter Inlet Temp. (Im) F 91 91 91 91 92 92 92 92 93	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg"	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:55 14:05 14:15 14:15	e:0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 20.335 30.185 40.143 50.210 60.257 70.184 80.244 90.153 100.018	Meter Gage Pressure (ΔH) in. H ₂ O J. U	Meter Inlet Temp. (tm) %F 91 91 91 91 92 92 92 92 92	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:15 14:15 14:15 14:25 14:30	e:	Meter Gage Pressure (ΔH) in. H ₂ O J. U J. U	Meter Inlet Temp. (Im) F 91 91 91 91 92 92 92 92 93	Meter Outlet Temp. (t _m)	(From Metr Impinger Outlet Temp	Meter Vacuum "Hg" -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:00 14:15 14:15 14:15 14:30 14:35	e: -0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.1841 80.217 90.153 100.018 110.045 120.413	Meter Gage Pressure (ΔH) in. H ₂ O J. U J. U	Meter Inlet Temp. ((Im) %F 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92	Meter Outlet Temp. (t _m) °F	(From Metr Impinger Outlet Temp °F	Meter Vacuum "Hg"	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:15	e: -0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.1841 80.217 90.153 100.018 110.045 120.413	Meter Gage Pressure (ΔH) in. H ₂ O J. U Multiply tota	Meter Inlet Temp. ((Im) %F 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92	Meter Outlet Temp. (t _m) °F	(From Metr Impinger Outlet Temp °F	Meter Vacuum "Hg"	in. HgTest Data)mlsmlsmlsmlsmlsmls	(V _f) (V _i) gained ter Temp both inlet	Silica Gel or Train Silica Gel or Train grams (grams gram	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:55 14:05 14:15 14:15 14:15 14:35 Total Vol. in ft³ (Vm)=	e:	Meter Gage Pressure (ΔH) in. H ₂ O J. U J. U	Meter Inlet Temp. ((Im) %F 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92	Meter Outlet Temp. (t _m) °F	(From Metr Impinger Outlet Temp °F	Meter Vacuum "Hg"	in. HgTest Data) mlsmlsmls =mls Average Met (average of	(V _f) (V _i) gained ter Temp	Silica Gel or Train grams (grams grams gra	%O ₂
Static Pressur Clock Time 24 hour 13:35 13:40 13:45 13:55 14:05 14:05 14:15	e: -0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.1841 80.217 90.153 100.018 110.045 120.413	Meter Gage Pressure (ΔH) in. H ₂ O J. U Multiply tota	Meter Inlet Temp. ((Im) %F 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92	Meter Outlet Temp. (t _m) °F	(From Metr Impinger Outlet Temp °F	Meter Vacuum "Hg"	in. HgTest Data) . Condensate mlsmls =mls =mls (average Method (average of	(V _f) (V _i) gained ter Temp	Silica Gel or Train grams (grams g. =grams g. perature: 91.69 and outlet if applicable)	%O ₂ (W _f) (W _i) ained
Static Pressur Clock Time 24 hour 13:35 13:40 13:55 14:05 14:15 14:15 14:15 14:35 Total Vol. in ft³ (Vm)=	e: -0.1 Meter Volume (Vm) ft3 or(1) (Circle One) 00.00 10.167 10.335 30.185 40.143 50.210 60.257 70.1841 80.217 90.153 100.018 110.045 120.413	Meter Gage Pressure (ΔH) in. H ₂ O J. U Multiply tota	Meter Inlet Temp. ((Im) %F 91 91 91 92 92 92 92 92 92 92 92 92 92 92 92 92	Meter Outlet Temp. (t _m) °F	(From Metr Impinger Outlet Temp °F	Meter Vacuum "Hg"	in. HgTest Data) mlsmlsmls =mls Average Met (average of	(V _f) (V _i) gained ter Temp	Silica Gel or Train grams (grams grams g	%O ₂

Isokinetic Sampling Cover Sheet Test Engineer: 77 Test Technician: 40

		Plant Information	
Run Number:	/	Date: 7/23//3	Project Number: 14/33003
Test Location:	BOILER OUTLET DUCT	Client Name: UNIUERSITY OF IOWA	Client Name: WIVERSITY OF IOWA Plant Name: HURST BOILER PLANT
Duct Shape:	Circular or Rectangular	Length: 5,5 Width: 3,5 or Diameter:	Diameter:
Flue Area:	19,250	Upstream Diameters:	Downstream Diameters:
Port Type:	FCANGE	Port Length: 6	Port Diameter: 6
Test Method: _	5/202	Source Condition:	
		Meter and Probe Data	
Meter ID: CM6	36	Meter Y Value:/,	ΔH Value: /,
Pitot ID: 203		Pitot Coefficient: , 840	Train Type: $\#_{0}7 \#_{0}x$
Nozzle Kit ID 55	55	Nozzle Diameter: ,495	Filter NumberWeight: 6093
Danka I anath: (//	(1)	Disho Line: ///or	Thimble Ni mbe-Minisht.

Pitot Coefficient: 1840 Train Type: 1957 190x Nozzle Diameter: 1495 Filter Number/Weight: 6093 Probe Liner: 6435 Thimble Number/Weight: 6093 Probe Liner: 9495 Thimble Number/Weight: 959 Thimble Number/Weight: 959 959	Total Points: 25	Ports Sampled: 5		Pre-Test Pitot Leak Check: OK	Check:	Probe Length: 4'	Nozzle Kit ID SS	Pitot ID: 203	
	Total Test Time: / 50 / ルルソ Sample Plane (Horizontal or Vertical	Points/Port: 5 Min/Point: 6	Traverse Data	0/0		Thimble Nun	Filter Number/V	Train Type:	

Initial Imp. Volume or Weight: (79/, 3 Initial Silica Weight: 823,8	Imp and/or silica balance Model and S/N: $5/6 - 36$	Barometric Pressure: 29, 3		
Final Imp. Volume or Weight: 2とらって Imp. Volume or Weight Gain: 26・7 Final Silica Weight: 8 アケッラ Silica Weight Gain: 26・5	Servomex Serial #: 0/94 oD 1 / 9	Static Pressure: -, 1	Stack Parameters	

Comments:

Post-Test Nozzle Verification:

1)_____2)______3)______4)____

Client: Plant: Project Number: UNIVERSITY OF 16WA M133003 HURST BOILER PLANT Test Method: Test Location: Date: BoileR OUTLETOUCT Operator: 7/23/13 5 1202 Page Number: Test Number:

> Test Tech: of

> > DE

1	ı	,	,	ι	ω ₁		((,	,	,	(,	ı	7			1				ı	ı	(l	1-1	Point #.	Port-			
3 1336	3 1327	أد	2 1221	2	1/3/5	1310	5 1307	40815		85616	31255	3 1252		94218	11243		7	5 1232	12	41226	4 1223	3/220	3 1217	2/2/4	2 /211	80211	1205	#. Time				
_	20	000	- 1		.03		0,01	0,01	510,	,015	510,		,02	,02	.025	,025		10/	,0/	,0/	,0/	1015	5/0.	510,	510'	. 0/5	,015	(∆P)				
8.0		1	00	Q =Q	0/0		6,3	0,3	0,4	0,4	4,0	0.4	6155	0,55	0,7	0.7		0,3	0,3	ω, 0	0 .3	0.4	4.0	0,4	0,4	0,9	0,4			Orifice		
405,30	43.60	h8 10h	400,13	398.40	396.658	396,658	395.24	394, 26	393.05		370,61	389.41	388,12	386.65	385,08	383,490	383,490	382,26	01.188	380.22	379,14	377,93	376.72	375.51	374,32	373.10	371.873	Actual	(V _m) ft ³ ,	Volume	Meter	
,173	1113	./73	, 173	11	× 173		00/,	,100	,122	,122	,122	,122	141	141	, 158	8511	0	,/60	.100	,/00	,100	,122	1,122	1,122	,122	122	3.122	8		Square		
1 575	, 575	,575	1575	1575	. 575		.329	1329	,403	:463	.403	.403	,465	1965	,520	,520		1329	,329	,329	,329	, 403	, 403	, 403	, 403	:403	,403			· ·		Meter
1,726	1.726	1,726	1,726	1,726	1.726		1987	,787	1.209	1,209	1,209	1,205	1,396	1:396	1,561	1,561		,987	,987	, 987	. 987	1,209	1,207	1,209	1,209		1,209	point	(V _m) ft ³ ,per	Volume,	Meter	Theoretical
405,288	403.562	401836	400.110	398,384		396,214	395,227	394,240	393,031	391,822	390,613	389,404	388,008	386.6/2	385,051		383,075	382,088	381.101	380.114	379.127	377.918	376.709	375.500	374.291	373,082		total	(V _m) ft ³ ,	Volume,	Meter	Theoretical
8 365	365	$\overline{}$	362	-	363	+-	367	367	366	366	365	365	3	60	368	368	,	372	372	1373	373	22	377	378	378	379	379	ĥ	Temp,	Stack		
58	98	46	46	46	46		46	20	46	76	94	46	99		92	92		92	92	92	92	9/	9/	90	90	89		Inlet, °F	Temp	Meter		
16	16	9	9	9/	1/8		9/	19	1/9	9/	9/	1/8	70	70	90	90		8 9	200	80	00	89	200	89	89	8		Τή	Outlet,	Temp	Meter	
	_		_	\	-		_				/				1	\		_		_	_		_	_	\	\		"Hg	Vacuum,	Pump		
253	254	252	253	253	253		253	253	253	252	252	253	253	259	257	252		250	25/	252	253	250	252	253	253	254	254	4				
152	250	252	252	250	251		152	152	250	251	25/	251	25/	25/	052	25/		252	152	251	251	25/	253	251	250	25/	251		Filter			
78	78	Ó	00	00	00		87	80	0	000	80	200	82	28	500	N		24	かな	2	250	53	58	58	58	85	4	Temp. F	Filter	CPM		
8	53	30	52	52	52		25	59	24	54	45	54	28	28	20	55		53	59	2	6	63	83	69	00	65	67	Temp °F	Well	Outlet	Impinger	

Plant: Client: Project Number: UNIVERSITY OF IOWA M133003 HURS T BOLER PLANT Test Method: Test Location: Date: BONER OUTLE TOUCT Operator: 7/23/13 5 /202 Page Number: Test Number:

Test Tech: AD
of Z

	4	5	_ [I"	2	-J	1	-2	-2	-	1-5		7	2	7,	7	_	"	2	101	13		4-1		5-	2.5	4-	3-4	Point #.	Port-			
1201	1501	2561		クスター	9449	3461	1443	1440	1437	1434	1431	1423	1420	1411	14/4	1711	1011	10,0	1405	1407	1359	1356	1353	1345	1342	1339	1336	1333	Time				
		. 0 0	7.7	,025	,625	50,	707	,025	,025	,025	,025		,00	20,	103	,00	2	200	C	- 3 Ir	اد	,035	.035		210'	510'	,02	,02	(AP)				
			_+	\dashv	0,7	616	0	0.7	0,7	0.7	0,7		0,00	Q'X	2,0	10	0			1,0	0.7	1,0	1,0		4.0	0,4	3,0	0,6	(AH)	Setting	Orifice		
	447.021	445.22	443,4-	88.144	440,26	438.83	437.39	435,80	434,20	424.57	430,965	430.765	424.15	-		100,000	26 220	471.96	4/9,97	418-13	4/6.25	1414,39	412,510	4/2,5/0	411.07	409,84	408.42	907.14	Actual	(V _m) ft ³ ,	Volume	Meter	
		173	7 /173	141	141	11-1	11/4/	851'	35/1	,/5x	1/5		1/7/3		1	-	./73	,200			187	//87	.187		,/22	.122	141	141	8		Ō,		
		1586	985'	.478	.478	,478	1864	,535	.535	,535	.535		15/3	300	10/0	262	575,	1064	1664	129,	129'	,621	.621		,407	,407	,470	,470	Min. p	Feet/ (-		Meter T
		1,758	1.758	1,605	1,605	1,435	1,435	1.605	(600)	1,600	1,605		11/10	000	1000	10	1,726	1,993	1.993	1.863	2981	1,863	1.863		1,220	1,220	1,409	1.404	point	(V _m) ft ³ ,per	Volume,	Meter	Theoretical
	186,981	445.223	443,465	141860	440,255	028.854	437.385	735, 180	757,175	70/0/0	1122	0000	17/1/14	101.101	107 101	ンシンククロ	423.949	421.956	4/9,963	4/8.100	4/6,237	4/4.374		217.714	7501114	409,832	408,423			(V _m) # ³ ,	Volume,	Meter	Theoretical
		365	365	354	20	7/1/	U	اد	7000		N	3	00	ی ار	-	_	357	364	364	364	364		ъ.		347	347	1.		1	mp,			
		26	95	95	75	22	52,	1,2	3 2	1 1	77		Ĉ	000	30	26	96	26	36	46	20	193	93	1	2 6	26	58	28	Inlet, 'F	Temp	Meter		
		20	92	26	26	200	77	200	0 7	3	1000	- 1		27	52	97	92	26	26	20	26	77	200	3		70		77	7	Outlet,	Temp	Meter	
		(J)	W	12	1	10	7 1	30	0	N) U	J	(יע	N	J	W	2	7	7	7	7	. 4	:	2	1	1	1 6	200	Vacuum,	Pump	ı	
		554	253	252	700	2000	777	7007	1000	7<7	300	2	607	1	۱۸	252	253	252	253	254	V	1000	200	3	222	200	253	3 6	o lello	Tope of	3		
		252	157	3.2	100	12/			П	136	186	J 1	-	200	751	286	252	ĺΛ	N	157	187	220	00/	: 1	152	157	100	2007	- 1 -	Tames of	1		
		79	79	77		100	200	00	0	800		200	- 1	1 0	7	78	78	28	7 8	13,	00	100	2000)	/ \a	3 03	39	300	S -	Tomp of	מלא!		
		58	. I	00	200	100	100	200	200	1	9	2		2	0	ls 9	59	3	85	25	22	10	10	/	07	27	27		1000	Well	Outlet	Impinger	

TTAJ9 IQAATSOM

IMPINGER 8

IMPINGER 7

IMPINGER 6

IMPINGER 5

IMPINGER 4

ІМРІИБЕЯ 3

E'hh8

N'169

IMPINGER WEIGHT SHEET

	THE RESERVE OF THE PARTY OF THE			
ІМРІИСЕЯ 2	5.059	1'150		>1N478
5 5 10 H	4		一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	CONTRACTOR OF THE PARTY OF THE
IMPINGER 1	8.573	6'065		JUA18
A CONTRACTOR OF THE SECOND				A CONTRACTOR OF THE PARTY OF TH
Circle One:	SMAR9\SIM	MLS / GRAMS	NIAĐ	соитеитѕ
	FINAL WEIGHT	THOIBW JAITINI	ШРІИСЕЯ	ІМРІИСЕЯ
BALANCE ID:	VSURED BY: JE	~~~		
METHOD: 5	207/			
TEST NO:	,			
DATE: 7/2	81/8			
LOCATION:	EXHAUST	1000		
-/-:ON TINU	OR TZAU	8371		
PLANT: (\\\\)	10 ALISAAN.	6mol		

			, .
	JATOT JANIH	JATOT JAITINI	NIAS ABBNI9MI JATOT
IMPINGERS	L'soll	22861	ゟ 'とっと

8.823.8

5'569

FINAL TOTAL INITIAL TOTAL SILICA GAIN SILICA

421715

D1 1450

Isokinetic Sampling Cover Sheet Test Engineer: 07 Test Technician: 140

Comments:	Barometric Pressure: 27, 3 CO ₂ %: 1 1 Avg. 10, 2 Imp and/or silica balance Model and S/N: 5/ Initial Imp. Volume or Weight: 1927, 4 Initial Silica Weight: 820, 5	Ports Sampled: 5	Meter ID: CM 6 Pitot ID: Z 3 Nozzle Kit ID SS #7 Probe Length: 4/ Pre-Test Nozzle Leak Check: G. 0 8 @ Pre-Test Pitot Leak Check: 9 0 8	Run Number: Test Location: Solve A vot Le T Oue T
Post-Test Nozzle Verification: (1)2)3)4)	Stack Parameters Static Pressure: -, / /Avg. /o.s Determined by: Method 3 or Method 3A 5/0-36 Final Imp. Volume or Weight: 2/58.5 Imp. Volume or Weight Gain: 227./ Final Silica Weight: 837.4 Silica Weight Gain: /6.9	Traverse Data Points/Port: ら Min/Point: ら	Meter and Probe Data Meter Y Value: △H Value: Pitot Coefficient: , 8 € ○ Train Type: #07 Ø0 × Nozzle Diameter: , 49 8 Filter Number/Weight: 609 2 / Thimble Number/Weight: 9 5 "Hg Post-Test Nozzle Leak Check: 0 60 3 0 5 "Hg Post-Test Pitot Leak Check: 0 60 3 0 5 "Hg	Plant Information Date: 7/23//3 Project Number: 1/23/03 Project Number: 1/23/03/03 Project Number: 1/23/03/03 Project Number: 1/23/03/03 Project Number: 1/23/03/03 Project

	Plant:	Client:	Project Number:
	HURS 7 BOILER PLAN T Test Method:	UNIVERSITY OF 10WA Test Location:	M133003
	のスタップ Test Method:	Test Location:	Date:
A. T.	5 1202	Boller COTLET OKE Operator:	7/23/13
	Page Number:	7 Occ_7Operator:	Test Number:
	/ of 2	07 Test Tech: 190	2

S	13	-2	1	4		2-	2	-4	4-	<u>ا</u>	2	-2	2	- /	2-1	4	∹ ح	7	- 9	4-	\ \	<u>,</u>	· I	- 2		1	1-1	Port-
1820	18/7	1814	1/8/1	1808	1803	1860	1757	1754	1751	1748	1745	1742	1739	1736	1733	7727	1724	1721	1718	1715	1712	1709	1706	1703	1700	1633	1630	Time
0	.025	.025	M	,025		101	.01	510'	1015	102	.02	.02	,02	,62	20.		,0/0	,0/0	10/0	.0/0	,0/0	,010	210'	2/0:	5/0,		,02	(AP)
0.7	0,0	0.7	0,7	0,7		0,3	013	14,0	0,41	25,0	0,55	0.55	55,0	0,55	58.0		0,2	0,3	0,3	0,3	8,0	0,3	14,0	0,41	14,0		25.0	Orifice Setting (ΔH)
48035	478,76	477. 20	475.62	474,030	474,030	472.95	471.96	470.75	469.54	468.18	466.75	465,38	463.97	462.61	461.168	461.168	460.15	459,19	458.37	457.30	456.21	455.37	454.12	. 9	451,590	451.590	450.145	Meter Volume (V _m) ft ³ ,
1/5	14	./5	1.158	0.158	0	100		./22	,122	14/	141	141	141	141	121	-	,100		1/00	1/00	./00	,100	122	-	122		141	Square Root,
1526	,526			.526		1329	, 329		,403	.465	.465	,465	, 465	. 465	1465		,329	,329	,329	, 329	,329	. 329	1403	,403	,403		1965	Meter Rate, Cubic Feet/ Min.
1.578	1.578	1	1,578	1.578		0, 986	0.986	1,208	1,208	1.395	1,395	1,395	1,395	1,395	1,395		0,986	0,986	0.986	0,986	0,986	00	1,208	1.208	1,208	, 	1,395	Theoretical Meter Volume, (V _m) ft ³ ,per point
480,342	496814	477.186	475.608		473,926	472,940	471.954	470.746	469.538	468.143	466,748	465,353	463.758	462,563		461.13	460.144	459, 158	458.172	457.186	456,200	455,214	300%54	452.798		451.540		Theoretical Meter Volume, (V _m) ft ³ , total
367		365		366			395	1	-	369	369	373	373		370		1	369	_	369				376	374	,	392	Stack Temp,
90	38	95	46	1 ~		2		9	75	25	95	79	94	93	93		93	93	83	93	93	93	93		26		9/	Meter Temp Inlet, °F
93	93	23	93			93	23	20		26		92	-	26			92	92	28	92	92	92	92	92	92		9/	Meter Temp Outlet,
W	ω	w	W	W		-	-	2	2	2	Ŋ	2	12	2	10		_		,	\	_	\	2	2	1/2		N	Pump Vacuum, " Hg
252	253	254	252	253		252	254	M	252	253	259	253	252	252	253		253	251	252	253	253	253	252	253	253		152	η̈́
25/	250	1	152	250		152	250	152	25/	152	250	152	25/	250	251		250	25/	1.52	250	250	250	251	152	250		249	Filter Temp. °F
70	73	73	08	0 25		77	77	76		76	76	77	77	18	00/		79	79	00	0	17	82	₹ W	89	285		28	CPM Filter Temp. °F
25	55	55	69	69		50	67	60	60	59	59	85	59	9	9		6/	0	20			62	20	Q 0	20		67	Impinger Outlet Well Temp °F

Client: Plant: Project Number: M133003 UNIVERSITY OF 16WA HURST BOILER RANT Test Method: Test Location: Date: 7/23/13 Page Number: Test Number: <u>D7</u> Test Tech: <u>A0</u> 2 of 2

																					4							Poi	ם		
	4	ζ	4	16-	\ \	3	2	-2/	-11	5-11		7	2	-4	7	3	- 3	2	2	-1	-		3	7	, 4	, 4	3-3	Point #.	Port-		
1954	1951	1948	1945	1942	1939	1936	1933	1930	927	424	1915	1912	1909	1906	1903	1900	1857	4581	N.	1848	1845	888	1835	1832	1829	928	1823	Time			
	1015	,015	20.	.02	,02	.02	,02	.02	,02	,02		103	.03	,035		,035	.035		,03		i U		1010	.010	1015	,015	.025	(<u>A</u> P)			
	144	144	,58	,58	. 58	85'	. 58	85'	158	. 58		0.83	5.83	0.97	0,97	0.97	0,97		0,83	0,83	0,83		0,3	0,3	0,42	0,42	0,7	(HQ)	Setting		
520.235	518.88	5/1.63	516,20	514.75	513,27	511,85	510,42	508.99	507.51	506,065	506,065	504, 20	502.47	500,63	498, 74	496.88	495,17	493.28	491.60	489.82	80,884	488,085	486,97	485.96	484.73	483.50	481.93	Actual	(V _m) ft ³ ,	Meter	
05	, 122	1/22	./4/	141	./4/	141	./4/	141	141	1 14/	-,	173	1 ,/73	1187	.187	3 //87	1/87	8 . 173	./73	. , 173	5./73	8	.100	5./00	2211	2211	1/58	8	Root,	2	
	,416	1416	,481	184.	184	184'	184'	, 481	186	187		,576	,5%	.622	1622	,622	,622	.576	,576	,5%	,576		, 333	, 323	,407	,467	,526		Feet/	Rate,	Meter
	1,249	1,249	1,442	1,442	1,442	1,442	1.492	1,442	1,442	1,442		1,729	1.729	1.867	1.867	1.867	1.867	1,729	1.729		1,729		8 66.	866'	1, 2.2.2	1,222	1.878	point	(V _m) ft ³ .per	Meter	Theoretical
520,099	5/8,850	517.601	516.159	514.717	5/3, 275		5/0,391	508,949	507, 507		505, 927	504,198	502.469	500,602	498.735	808.964	495,001	493.272	491.543	489.8/4		487.938	486,940	485,942360	484.720 262	483,498 362	481,920	total	(V _m) ft ³ .	Meter	Theoretical
	724	33.4 4.5E	335	335	222	332	3/2	3/2	3/	3/7		36.1	361	366	366	364	364	366	366	366	366	1	360	1360	262	362	367	Ĥ	Temp,		
	96	96	96	96	36	36	96	36	28	95		97	97	97	97	96	96	98	96	46	94	39	96	96	96	96	96	Inlet, °F	Meter Temp		
	94	176	44	20	44	94	44	79	44	99		46		94	46	20	93	83	l \	93	93		70	74	23	93	93		l emp Outlet.	Meter	
	7	73	2	2	2	2	12	N	7	12		J	w	4	4	4	4	W	w	W	W		\	_	2	12	W	" Hg	Pump Vacuum.	J	
	253	254	253	252	253	254	252	252	253	257		252	253	251	252	252	2s3	252		253	N.		752	Λı	252	25/	251	Temp. °F	Probe		
	251	251	0.52	251	752	250	250	250	152	250		251	250	252	253	252	25/	250	251	252	25/		152	252	253	253	252	Temp. °F	Filter		
	75	75	79	74	74	74	74	74	74	74		69	69		8	80	89	76	70	77	77		75	75	70	70	70	Temp. °F	Filter		
	90	99	69	64	29	29	6/	6	6/	6/		55	55	25	53	45	45	45	45	52	29		0	00	25	55	89		Outlet Well	Impinger	

UNIVERSITY OF 10WA Test Location: HURST BOILER PLANTTest Method: M133003 Project Number: Client: Plant:

7/23/13 Date:

Page Number: Test Number: Bolle A OUTLE 7 OUL TOperator: /202

Test Tech: 40

Impinger Outlet Well	$\overline{}$	0	67	65	02	r x	77		1 ~	200		19	0	0 5	0	00	00	000		59	00		60	20	20	29	27	57
CPM	Temp. °F	200	85	85	85	200	000	16) \	100		2	No.	77		100	100	000	0	X	8		28		29	61	200	78
Filter	Temp		250	255	253	100	200	10		250		250	251	254	253	250	152	250	252	250	152	1	251	787	250	252	250	152
Probe	Temp. F	456	200	ر از	620	₂ [√	V	75/	252	152		251	252	253	252	W		25/	250	252	253		251	252	157	253	252	152
Pump Vacuum,	"Hg		,	,				_				3	8	M	3	W	η	2	2		_		33	3	8	5	7	4
Meter Temp Outlet,	با ٥	10	10	0	16	16	15	16	16	15		16	16	16	16	16	16	16	16	90	90		90	90	90	96	90	90
0	Inlet, 'F	10	10	- o	00	26	26	92	26	26		92	92	93	93	93	93	93	93	93	93		1 4	26	92			93
Stack Temp,	270	279	00	<u> </u>	700	378	38/	38/	382	385		381	38/	378	378	38.3	383	376	376	381	381		374	374	376	376	379	379
Theoretical Meter Volume, (V _m) ft³,	total	276663	200	- 1		527,575	528.780	529.985	531.190	532,174	533,158		534,917	536,621	538,315	540,029	541,584	543,139	544,530	545,921	547.126	548,331		6	5.51.806	553.525	555,244	257.101
etical	Polint	1,705		T	502/		,		78	1984		1,704				1,555	5		160	25	1,205		0	6)		19	57	857
T	402	7	,		1		905	1 20%	,328	,328		1805	,568 /		.568/	518	, 818,	495	464	402	20%			573 1	573 1	s 1.	6/0.	11 6/01
Square Root,	22		$\overline{}$	1	+-	\vdash	./22	,122,	\neg	00/		.173	,173,			./58	,158	////)	-	721.		, 173	13	173	2		1/87
Meter Volume (Vm) ft³,	971.550	527 77	52398	57517	526,40	527, 58	528.82	530,06	531.22	532,19	533.213	533,213	534.91	- 6' I	538,35	5%0.0%	10.1	543.14	544.55	۷ ۱	547,13	548.368	548,368	550,10		9	555.76	671196
Orifice Setting				14	15	14.	14		\exists	3					1	\neg		,	رم		7		~	~	2	2		16
(dV)	10/0		212	2/0	5/0	5/0'	5/0'	5/0/	0/0	0/0'		0,03	0,03	0,02	0,03	_	\dashv	0,020	070.0	510'0	0,015		0,03	50,0	ol	0,03	0,035	0.035
g E j-	2118	2/2/	2124	2127	2/30	2133	\	2139	_ 1	2145	361	2	154	\dashv	7 200		0	0,	2	5	20					253	2236	6527
Port-		-	-2	-2	6	5	-	<i>h</i> -	~5	5-		2-1	-	_	N			•			.5	-	3-1	\dashv	2-	10,		-36
								_																				_

1133003 Project Number: Client:

DLAN7 UNIVERSITY OF 16WA

HUAST BOILER

Plant:

Test Location: Test Method: Date:

Page Number: Test Number: Boile a outlet Duct Operator: 51/23/13 /202

Test Tech: AO οť

i emp 'r	56	57	57		55	55	53	53	53	N	50	53	53	53		53	8	15	1/2	51	5/	15	51	15	5/		
7.7	77	77	77		78	1		20						74		76	26	75	75	75	75	75	75	75	75		
	252	251	250		250	152	252		251	250	250	250	250	152		250	250	25/	250	252	251	250	152	152	250		
4	253	252	253		752	282	253	252	253	152	253	252	252	152		250	152	252	152	253	252	254	252	254	ln		
лд /	7	W	8		5	5	5	5	5	5	8	5	5	5		9	8	9	3	3	3	50	7	3	3		
	20	80	90		20	20	89	89	80	89	89	89	83	89		89				89	00	80	80	88	00		
93, r	93	93	93		92		63	93	93	83		93	93	93		20	90	0	0	0	7	Ġ	16	15	16		
l			372	1	382		380	-		379	-		377	377		319	- I	_	528	322	322	212	317	3/6	316		
558.958	560.67;	562,396	563,966	565,536		567,756	569.735	571,834	573.933	575,912	00	26,8	581.8 49	583.828	585,807		N)	88.71	540.145	591.571	592.997		596,017	7.0	9,03	600°,463	
61	7/9	1,570	1,570			6267	5	0	79		1.979		1	1.979		1.426	1,426	1,426	11426	1,426		1,594		ی	1,426		
5	,573	,523	523		0009,	090	1700		099,	.080	8	000	,660	, 660		1475	717	,475	475	.475 ,	,475	,531	.531	475	475		
,173	173	85/	85/1		,200	1200	212	,212	,200	, 200	1200	,200		. 200		141.	/4/			/6/	15/	./58	1.58	/4/	14/	-	
559.00	560.72	562.43	563,98	565,777	565,777	567,79	569,74	571.87	573,98	575.92	N.		581.86	583.84	585,867	585.861	587.31	588.75	590,21	591.60	593.04	54.45	596,23	597.68	544.19	600,513	
	,83	,76	1,70		1111	1111	1,24	1,24)///	////	1111	1111	1111	1111		,57	,57	.57		.57			172	157	157	(
0,03	0,03	0,025	5200		0,60	0,00,	5601	5601	060'	060'	9,00	0401	040.	0,00		70'	20,	70%	,02	,02	701	,025	.025	70,	201		
2242	2245			2254	22.59	2302	2305	2308	- 1	1	2317	2320	2323	2326	2329	2335	2338	234/	2344	2347	2350	2353	2350	2359	2000	5000	
3-4	h-	-5	-5	163	1-6	7	-2	2-	2	13	2-	2-	2-5	-5		1-5	1-	-2	1-2	-3	5	٠,4	7 ~	6	5		
	2242 0.03 .83 559.00 (173 ,573 1,719 558,958 374 93 90 4 254 261 77	2242 0.03 .83 559.00 .173 .573 1.719 558.958 379 93 90 4 259 251 77 77 2245 0.03 .83 560.72 .173 .573 1.719 560.677379 93 70 4 253 252 77	2242 0.03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 254 257 77 77 2245 0.05 ,83 560.72,173 ,573 1,719 560.677374 93 90 4 253 252 77 77 77 77 77 77 77 77 77 77 77 77 77	2242 0.03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 254 257 77 77 2245 0.03 ,83 560.72 ,173 ,573 1,719 560.677374 93 90 4 253 252 77 77 77 77 80.025 ,70 562.43 ,158 ,523 1,570 562.396 372 93 90 3 252 257 77 77 77 77 77 77 77 77 77 77 77 77 7	2242 0,03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 254 251 77 77 2245 0,03 ,83 560.72 ,173 ,573 1,719 560.617 374 93 90 4 253 252 77 77 2248 0,025 ,70 562.43 ,158 ,523 1,570 562.36 372 93 90 3 252 251 77 77 77 77 77 77 77 77 77 77 77 77 77	2242 0.03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 253 252 77 2548 0.025 ,70 562.43 ,158 ,523 1,719 560.677374 93 90 3 252 251 77 77 72 ,159 ,158 ,523 1,570 562.396 372 93 90 3 252 251 77 77 77 565.777 2259 .000 5 565.777 ,200 ,660 1,979 382 92 92 90 5 251 250 77	2242 0.03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 253 252 77 2548 0.025 ,70 562.43 ,158 ,523 1,719 560.617374 93 90 3 252 251 77 77 2248 0.025 ,70 563.98 ,158 ,523 1,570 562,366 372 93 90 3 252 251 77 77 2254 0.025 ,70 563.98 ,158 ,523 1,570 562,966 372 93 90 3 255 250 77 77 2254 0.025 ,70 565,777 ,200 ,660 1,979 565,536 282 92 90 5 251 250 77 2254 0.040 1,11 565,777 ,200 ,660 1,979 567,756 382 92 90 5 252 251 75	2242 0,03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 259 257 77 2245 0,03 ,83 560.72 ,173 ,573 1,719 560.617374 93 90 4 253 252 77 2245 0,025 ,70 562.43 ,158 ,523 1,570 562.366 372 93 90 3 252 257 77 2259 0,025 ,70 562.43 ,158 ,523 1,570 562,366 372 93 90 3 255 257 77 2259 0,025 ,170 565,777 ,200 ,660 1,979 565,536 382 92 90 5 251 250 77 2259 ,0% 1,1/ 565,777 ,200 ,660 1,979 565,756 382 92 90 5 251 252 257 78 2305 ,0% 1,1/ 565,779 ,200 ,660 1,979 567,756 382 92 90 5 253 252 257 78 2305 ,0% 1,24 569,774 ,212 ,700 2.097 569,735 380 93 89 5 253 252 252 76	2242 0,03 .83 559,00 1,73 ,573 1,719 558,958 374 93 90 4 253 252 77 2245 0,03 .83 560,72,173 ,573 1,719 560,677374 93 90 4 253 252 77 2245 0,025 ,70 562,43 ,158 ,523 1,570 562,396 372 93 90 3 252 251 77 77 2251 0,025 ,70 562,77	2242 0.03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 253 257 77 77 2.245 0.025 ,75 562.43 ,573 1,719 560.677374 93 90 4 253 252 77 77 72 563.98 1/58 ,523 1,570 562.366 372 93 90 3 252 257 77 77 77 565.777 .2259 .040 1,979 565.756 382 92 92 90 5 525 250 77 77 72 565.777 .2259 .040 1,979 565.756 382 92 90 5 5 251 250 77 77 78 2259 .040 1,1/ 565.777 .220 ,660 1,979 567.756 382 92 90 5 5 252 25/ 78 78 220 ,045 1,1/ 565.777 .200 ,660 1,979 567.756 382 92 90 5 5 252 25/ 78 250 25/ 78 25/ 100 2,099 57/834 380 93 89 5 255 25/ 76 25/ 100 2,099 57/834 380 93 89 5 255 25/ 76 25/ 100 2,099 57/834 380 93 89 5 255 25/ 75 25/ 100 2,099 57/834 380 93 89 5 255 25/ 75	2242 0.03 .83 559.00 , 173 ,573 1,719 558.958 374 93 90 4 253 252 77 2245 0.03 .83 559.00 , 173 ,573 1,719 569.677374 93 90 4 253 252 77 2248 0.025 ,70 562.43 ,158 ,523 1,570 562.766 372 93 90 3 252 257 77 2259 0.025 ,70 562.77 ,200 ,660 1,979 565.956 372 92 92 92 50 50 50 77 2259 0.046 1.11 565.77 ,200 ,660 1,979 567.756 382 92 92 70 5 252 257 78 2305 0.045 1.24 567.87 ,212 ,700 2.097 577,834 380 93 89 5 253 252 76 2310 ,040 1.11 575.92 ,200 ,660 1,979 577,834 380 93 89 5 253 257 76 2314 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 253 257 75 2514 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 253 257 75 2514 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 253 257 75 2514 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 253 257 75 250 75 2514 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 253 257 75 2514 ,090 1.11 575.92 ,200 ,660 1,979 575.912 379 93 89 5 251 250 75	2242 0,03 .83 559.00 ,173 ,573 1,719 558.958 374 93 90 4 259 257 77 2245 0,03 .83 560.72 ,173 ,573 1,719 560.617374 93 90 4 253 252 77 2248 0,025 ,70 563.98 ,158 ,523 1,570 562.396 372 93 90 3 252 251 77 2259 0,025 ,70 563.98 1/58 ,523 1,570 565,536 372 93 90 3 252 251 77 2259 0,025 ,70 565,777 ,200 ,660 1,979 565,736 382 92 89 5 252 257 78 2305 ,045 1,77 560,774 ,212 ,700 2,099 577,834 380 93 89 5 253 252 76 2317 ,040 1,77 573,92 ,200 ,660 1,979 577,834 380 93 89 5 253 257 75 2314 ,090 1,77 573,92 ,200 ,660 1,979 577,834 380 93 89 5 253 257 75 2314 ,090 1,77 573,92 ,200 ,660 1,979 577,834 380 93 89 5 253 257 75 2317 ,040 1,77 575,92 ,200 ,660 1,979 577,891 377 93 89 5 253 257 75 257 75 2517 ,040 1,77 577,90 ,200 ,660 1,979 577,891 377 93 89 5 253 257 75 250 75	2247 c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,c,	17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.4	2245 0.03 . 83 559.00 173 571 1719 568.978 374 43 70 4 254 257 77 7244 20.03 . 83 559.72 173 573 1719 568.978 379 93 90 4 254 257 77 2245 0.025 75 562.43 158 523 1.570 562.396 372 93 90 3 255 257 77 225 0.025 70 562.48 1/58 523 1/570 562.396 372 93 90 3 255 257 77 225 0.025 70 565.77 120 160 1/479 565.756 382 92 90 3 255 250 77 225 0.05 1/4 567.77 120 160 1/479 567.756 382 92 90 5 255 250 77 230 0.045 1/4 567.77 120 120 120 2.047 577.834 380 93 89 5 251 251 75 231 0.040 1/4 577.83 120 1.040 1/479 577.834 370 93 89 5 251 250 75 231 0.040 1/4 577.83 120 1.040 1/479 577.834 370 93 89 5 251 250 75 231 0.040 1/4 577.83 120 1.040 1/479 577.84 371 93 89 5 251 250 75 231 0.040 1/4 577.83 120 1.040 1/479 577.84 371 93 89 5 251 250 75 231 0.040 1/4 577.83 120 1.040 1/479 577.84 371 93 89 5 251 250 75 231 0.040 1/4 577.88 120 1.040 1/479 577.84 371 93 89 5 251 250 75 231 0.040 1/4 577.88 120 1.040 1.079 578.849 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.84 577.8	1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990	1.245 0.05 3.8 5.60 7.13 5.73 1.719 562,136 374 37 70 4 254 257 77 2245 0.05 3.8 5.60 7.2 1.719 562,136 372 47 4 257 257 77 2245 0.025 70 562,43 1.570 562,36 372 47 4 257 257 77 2254 0.05 70 563,48 1.570 562,36 372 47 4 257 257 77 2254 0.05 70 563,48 1.58 1.570 562,36 37 4 27 4 255 257 77 2254 0.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2.245 0.05 8.3 359.00 1.73 31111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.01111 1.011111 1.011111 1.011111 1.011111 1.011111 1.011111 1.011111 1.0111111 1.0111111 1.011111 1.011111 1.011111 1.011111 1.0111111 1.0111111 1.0111111 1.0111111 1.0111111 1.01111111 1.0111111 1.0111111 1.01111111 1.01111111 1.01111111 1.0111111111 1.0111111111 1.01111111111	2245 c.o.63 83 550-72 173 573 1714 558-67374 73 70 4 254 257 77 2245 c.o.63 83 550-72 173 573 1714 568-677374 73 70 4 254 257 77 2245 c.o.63 83 550-72 173 573 1714 568-677374 73 70 4 254 257 77 2254 c.o.65 170 568-77 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 568-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578-775 578	2245 0.003	2245 0.003	12245 0.053 .83 559.00 173 1714 1918 174 174 174 175 174 175 174 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175 175	12.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	22476 Co.

Facilities
Management
The University of lowa

Тне U	NIVERS	ITY OF I	OWA										(
THE U	1000	200.2	876	80%	91690.	80%	43%.	90%.	8	92%	8/03/0	50	
Dahovse:	10.8/10.8" W.C.	11.0/11.3"	11.0111.3"	11.0 11.3"	11.0/11.3"	11.8/11.3"	11.9/113"	11.5111.511	1.3/11.3"	"C.II.16.II	11.8 11.3"	11.3/11.3.	
Collector:	.6" W.C.	j.		"O.	11-12	<u></u>	Mt. 1	1.04	10.1		11_	<u></u>	
Meteringi	36%	38%	40%	S. S.	4/90	80	49%	3690	3/%	3490	38%	0000	
Stean Flow.	NS.01	11.8K	7.00	18.II	13.9K.	10.9K.	78.1	=	N. O.	10.0X	11.3k.	10.6K	
Time:	9:197	9:30p	dSh:b	10:80 Jan. 01	10:13p	10:30b	10 HSD	11:00	11:15p.	11:30p	III.	24-13. 19:00 R.	477

47720/1-13

Fa Fa M	acilit ana	cies gem	ent		آ ۔	7:21 Run#a done				
TDF3n:	06	601	460	469	614	160	80%	16%	946	
Dehouse: 11.9/11.3" IN.C.	1.11	11.11.11.9"	"H-01 H-01	10.8110.811		11.0/11.3"	11.3/11.3	10.	"E" e	
Collector:	5.	. 00	Ft.	70 .	TT.	3.	1.0		,0.1	
Metering:	3/9	3460	30%	30%	33	34%	31%	38%	0696	
Stean Them.	11.8/	11.6K.	11.6K.	N.3K.	- -	74-11	5.			
Time: U:30P.	J. 45P. J	0; 81: F	4:15p	र्वे स	dSJ.L	91.00	8: S	00:30	1.0 mg/s	

Facilities Management
THE UNIVERSITY OF IOWA

XF.60 X0.C1	6	0	C 43	A 12 3
13.0K	922/10);););	11. x/ 11. 7 M.C.	22)
	3/.70	1.0"\AC	11.3/11.3"M.C.	83%
子. C.	33%	1.9" W.C.	11.3/11.3" W.C.	84%
NH 6	0/01/10	J.M.H.	J.W.P.F Q.F	600
X5:01	93%		16.8/8.9	68%
¥ 5	25.9%	11 /1	#('c//+'0(73.3%
7 × ×	8000	2,	10-6/10-6	75.3%
13,3 K	30.4%	5,	11.3/11.3	78.3%
\d	25.		12/10/	76.4%
11.5K	9690	FT.	"5.01/5.01	Ocht

	There	18. Z	10000000000000000000000000000000000000	Stetower	TE ST
1.3 & P	11.4 K	33370	9.00	22.90/0101	76%
d 24:1	三 2 万	25 K	<u>z</u> 3	11.2/11.3 "LC	<u>0</u> 0
7:00P	17.1K	82 82	7	11.2/11.3" WC	200
d.81:7	= 2 7	3070	0.9"EC	11.2/17.14	7/2
7:30/	78.21	32.70) 3 	Jan 2 11/2 11	92 24
23 42 12	7.7.	32%] 3	11.2/1/.3"CC	\$0 90
3,00	13.0 K	3470	J 3 	11.3/11.3 " 5 6	243
3:15 P	12.75	32%) 3 <u>5</u>	11.2/11.3465	24.2
3:300	17.8.71	31.82	3 5. 0	11.2/11.3400	03 25
31487	XF. 0	30%	1.0" W.C.	11.3 11.3" W.C.	9/10

Facilities Management The University of lowa				ZUM#1 START @ 17:05 P						
40 FA-1	% %	93 7,5	70 V	%26	\$ 2 L	824	7 1 %		52 50 20	26
BACABUSE AP	11.2/11.3" WC	11.2/11.3"6	11.3/11.8"6	11. Z/11. 3".CC	11,2/11.3"6.	\$ 5. \$ 5. \$ 3.	9.6(27)"CC	507.2.6/16	M.Z/11.3 & CC	10.6/10.5 "WC
Coccessor	73"6.0	0.9° WC	<i>5</i> .	3 4	3	Ø	J 3		7321-1	0, 20 3
MET-RIMG BIN	33.4%	×5.0%	30,3%	38.4%	78.32	27.0%	27.2	2/3/2	382	\$6.62
Shelty	11.0K	######################################	10.C	70,	76.0	0 1 2	5.03 Tro.03	7 7	7.57 X	777
TIME	11:00 A	11:15 A	11:30M	11:45-17	d 0012	7,51.5	<u> </u>	1-80;2	2	T - E11

ATTACHMENT 7

Observer:	Scott Postma
Company:	GREE GAKDALE
Location:	Goffeyville, KS_ Coralville IN
Source:	Boiler MACT toot Unit 3

Testing Firm: METCO-Inc. MOSTARDE PLAT Team Leader: Mr. Jehnson Roberto A
Phone Number: (602) 252-4509 (630) 841-5>05

R1:1205

EPA new METHODS 7E and 6C CHECKLIST

(Instrumental Analyzer Procedure Only)

Protocol Gases used (Section 1.3, M7E)?	No No
Free NH4 reacts w/ SO2 to form particulate sulfite, is the interfering, free NH4, in the source gas ?	No
Are the Sampling system components glass, Teflon, or stainless steel (Section 6.1, M7E) ?	
Sampling rate maintained above 10 % of the flow at which the system response time was measured ?	
Sampling components above the moisture dew point temperature ?	INO
Sampling probe made of glass and/or stainless steel (Section 6.2, M7E) ?	,
Sampling probe of sufficient length to get to all points, one, three, twelve? 4.51, 3.5 lic ? Yes	1
Is particulate filter in the stack filter probe Sintered ? Yes	No ا
Out-of-Stack filter used ? Yes /	No
Sampling line made of Teflor or other material ?	No V
Sampling line to pump and analyzer conditioned to avoid absorbing gas or otherwise altering sample ? Yes /	
camping and to pamp and analyzor contained to a roll about any gas or carefully camping	
Sampling pump of sufficient power to pull a critical vacuum and minimize the response time <2m 0 > ? (Est	ANO I
Sampling pump made of non-reactive material ?	-
Sampling pump made of non-reactive material ?	
Does manifold allow for introducing calibration gas directly to the analyzer ?	_
Does the manifold allow for introducing calibration gas to the valve following the probe, flooding the probe? Yes /	NO
Dry-basis or wet-basis? CAS CONDETTONER.	
250	53
For Dry-basis, Is temperature sufficiently high to avoid condensation before conditioning system? (6.2.4, 7E) Yes /	/ No
Conditioning components in-line to remove moisture for dry systems: ? Yes	/ No
Did the Dry-basis measurements have a condenser, dryer, or other: ?	
Did the Dry-basis measurements using a heated sampling line, probe:	
Did the biy basis incasarements using a neated sumpling inte, press.	
Conditioning components in-line to heat and/or dilute the sample to avoid condensation for wet systems?	/ No
For Wet-basis , Is temperature sufficiently high to avoid condensation to analyzer ? Yes	- 1
? What is the Dilution Ratio of Wet-basis system: No Diluted ?	140
	7.
Is the sampling pump made of non-reactive material (6.2.5, 7E)?:	
Is the sampling pump able to pull a sufficient amount to minimize sample time (< minutes) ? Yes /	
Is the sampling pump made of non-reactive material: ? Yes	
Did they demonstrate that the system, including the sampling pump, is leak free ?	≬No
What is the vacuum of the eductor (ejector) pump to pull the critical orifice vacuum (20 > 15" Hg)?	/ No
(See Section 6.2.6 and 6.2.7 for additional requirements)	/ No
NO SOL	
Is the SO2 analyzer type a non-dispersive infrared, chemiluminescence, or ultraviolet?(6.2.8.1, 13, 7E)	/ No
Is the NOx analyzer type a chemiluminescence:	
Does the NOx instrument use a NO2 to NO converter upstream of the analyzer: Stables Shel?	
	INO
Other instrument and setup:?	M
A series of the	
Analyzer Calibration Error (ACE), before the 1 st run and after any failed bias test? (Section 13.1, 8.2.3, 7E)	NO

o mid High

	Yesy No						
	Yes / No						
-For dilution, the difference between cal gas and analyzer when introduced to probe and all conditioning							
	Yes / No						
Were the 3-points equal to low (0-20), mid (40-60), high (= to cal span) ?							
ACE = ((C direct measured – C gas) / (Cal Span)) X 100							
	_						
System Bias (SB) (2-point test, Sections 13.2, 8.2.5 and 8.5, 7E)	Yes DNo						
Did the 2-pt SB or the SCE for all runs within +/- 5%? SB=, Run #s, Run #s	Yes / No						
Or within <u>or <!--= 0.5 ppmv,</u--> ?</u>							
SB = ((C measured – C direct) / *Cal Span)) X 100							
	Yes / No						
Is the <u>Drift</u> for Low level and High level = 3.0 % (or </= 0.5 ppmv) ?</td							
Drift = Absolute value (post-run SB – Pre-run SB)							
at All I have been a second or a second	1 1111						
SO2 allowable Calibration Gases (7.1, 6C)	Yes / No						
	Yes / No						
	Yes / No						
Other? Other? Other ?	1007110						
	Yes / No						
	Yes / No						
100001 00001 0000 0000 (111,12)	Yes / No						
If a low Conc. Analyzer used, do they have a Manufacturer's Stability Test (MST) (6.2.8.2, 7E)	Yes / No						
	Yes No						
Mid (40-60) $\frac{18.48}{11.5}$, Concentration $\frac{c_X}{11.5}$?	Ves No						
High (= 20 to 100% of measurements cal span) 45,5 4 ?Concentration 4 Novi4(15 ?	\smile						
SO2 and NOx Interference Check (IC) (13.4, 8.2.7, 7E)	Yes / No						
Was <u>IC</u> sum (all gases) < 2.50% span = 0.5 ppm span 5-10ppm or 0.2 ppm < 5 ppm ?</td <td></td>							
Were the following gases introduced separately or in a mixture in the IC (Table 7E-3)	Yes / No						
Was test conducted both with and without NOx (NO2 and NO, if RM at >20 ppm NOx, IC at 80-100) ?							
(15 in the second to second at 400 and a clock NO second blocking and accordance)							
Potential interferent Hot wet Dried							
CO2 5 and 15 % 5 and 15%							
H2O 25 % 1 %							
N2O, NH3, HCI 10 10							
NO, NO2 15 ppmv 15 ppmv							
SO2 20 20							
CO, CH4, H2 50 50							
NOTE: The IC only needs on one instrument prior to initial use in the field and valid for the life of the instrument	34						
NOTE: Method 6C uses an unmodified Method 6 trains and the above procedures substituting SO2 for NOx							
Dilution type SO2 instruments must use Section 16, 6C procedures, page 263.							
NO2 to NO Conversion Efficiency Test (NOxCET) (13.5, 7E)	Yes / No						
Is the NO2 to NO (CET) greater than or equal to 90% /h hickgas /o zero into ?	Yes / No						
The NO2 gas is required to be within 40 – 60 ppmv, was it (7.1.4, 7E)	Yes / No						
Alternative converter efficiency test, NO gas is required (16.2, 7E) ?	Yes / No Yes / No						
Alternative converter efficiency test, NO gas is required (16.2, 7E) ? Were the NOxCET gases Protocol gases ?							
Alternative converter efficiency test, NO gas is required (16.2, 7E) ?							
Alternative converter efficiency test, NO gas is required (16.2, 7E) ? Were the NOxCET gases Protocol gases ? NOxCET = (C direct / cal gas value) X 100							
Alternative converter efficiency test, NO gas is required (16.2, 7E) Were the NOxCET gases Protocol gases NOxCET = (C direct / cal gas value) X 100 Alternative Dynamic Spiking (13.6, 7E)							
Alternative converter efficiency test, NO gas is required (16.2, 7E) ? Were the NOxCET gases Protocol gases ? NOxCET = (C direct / cal gas value) X 100	Yes / No						
Alternative converter efficiency test, NO gas is required (16.2, 7E) Were the NOxCET gases Protocol gases NOxCET = (C direct / cal gas value) X 100 Alternative Dynamic Spiking (13.6, 7E)	Yes / No						
Alternative converter efficiency test, NO gas is required (16.2, 7E) ? Were the NOxCET gases Protocol gases ? NOxCET = (C direct / cal gas value) X 100 Alternative Dynamic Spiking (13.6, 7E) Were the pre and post (ADS) spikes within 100 +/- 10% or = 0.20 ppm ? Was the Effluent Correction calculation used ?</td <td>Yes / No</td>	Yes / No						
Alternative converter efficiency test, NO gas is required (16.2, 7E) ? Were the NOxCET gases Protocol gases ? NOxCET = (C direct / cal gas value) X 100 Alternative Dynamic Spiking (13.6, 7E) Were the pre and post (ADS) spikes within 100 +/- 10% or = 0.20 ppm ?</td <td>Yes / No</td>	Yes / No						

at above the property of the p	Yes / No
Was a <u>Dual Range Analyzer</u> used? (6.2.8.1, 7E)?	Yes / No
What were the ranges ? Were both ranges QA passed with IC, ACE, SB, and Drift? If not, which one failed ?	Yes / No
Were both ranges QA passed with IC, ACE, SB, and Drift? If not, which one failed?	75.
Sample Collection, Preservation, Storage, and Transport (8.1.6C> 8.1.7F)	Yes / No
Sample Collection, Preservation, Storage, and Transport (8.1, 6C> 8.1, 7E) Deviations from the method identified 10 to the topic 7124 20 pts ?	
Prior Stratification test conducted? Pollutant sampled? Data supplied?	Yes / No
Current Stratification test conducted ? Pollutant sampled ? Data supplied ?	Yes / No
12 test points sampled ? or 3-pts sampled at 16.7, 50.0, 83.3 % ?	Yes / No
12 test points sampled ? or 3-pts sampled at 16.7, 50.0, 83.3 % ? Did they sample each point for at least 2 X system response time Yes ? Sys. Resp. time ?	Yes / No
Is the difference at each point less than 5% or +/- 0.5 ppm.	Yes / No
If so, then single point sampling at closest point is acceptable ? If not, then were they less than 10.0% or +/- 1.0 ppm, ?	Yes / No
If not, then were they less than 10.0% or +/- 1.0 ppm,	Yes / No
If not, then were they less than 10.0% or +/- 1.0 ppm,?If so, then 3-pt sampling is allowable at 16.7, 50.0, and 83.3%?If not then 12-pt sampling is required?	Yes / No
If not then 12-pt sampling is required ?	Yes / No
If stack minimally strat. (5-10%) & greater than 7.8 feet, then 3-pt if sampling at highest averaged pt?	
Initial Measurement System Performance Tests (8.2, 7E)	B
Initial Measurement System Performance Tests (8.2, 7E)	Yes / No
Calibration Gas Verification (8,2.1) Manufacturers gas document available, complete, and current?	Yes /No
Measurement System Preparation (8.2.2) Did they assemble, prep, precondition, adjust the sample rate	
and the dilution ratio Sampling rate = Dilution ratio = ?	Yes / No Yes / No
Calibration Error Test (8.2.3) 3-pt pre run ACE performed, or post failed run ACE ? Were ACE results recorded and appropriately responded to (see ACE test above) ?	Yes / No
Were ACE results recorded and appropriately responded to <u>(see ACE test above)</u> ? Was the 3-pt ACE and SCE done at 3 concentration points?	Yes / No
Was the 3-pt-ACE and 3CE done at 3 concentration points	(es+No
Initial System Bias and System Calibration Error Checks, (8.2.5)	Yesy No
Initial System Bias and System Calibration Error Checks, (8.2.5) ? Which gas best emulates the stack concentration and is used as the upscale gas ?	Yes / No
Upscale SB gas introduced at probe No? 95% response time (RT)recorded final value?	Yes/No
Which gas best emulates the stack concentration and is used as the upscale gas ? Upscale SB gas introduced at probe No? 95% response time (RT)recorded final value ? Low level or zero gas introduced and 95% response time (RT)and concentration recorded ? Was the longer of the two times the time recorded ?	(Esy/ No
Was the longer of the two times the time recorded ?	Yes / No
From this data, is the RT and bias calculated 7E-2 (or system bias for dilution 7E-3) ? Is SCE = 2.0 % ? Is SP</= 5 % ? Is Drift </= 3 % ?</td <td>Yes / No</td>	Yes / No
From this data, is the RT and bias calculated 7E-2 (or system bias for dilution 7E-3) ? Is SCE = 2.0 % ? Is SB</= 5 % ? Is Drift </= 3 % ?</td <td>Yes / No</td>	Yes / No
Dilution systems can use the 3-pt in place of the 2-pt if injected at the probe?	
	Vee / Ne
Dilution type Special Considerations (8.3, 7E)	Yes / No Yes / No
(1) Is critical orifice and dilution ratio (DR) selected so that the dew point is below line conditions ?	res/No
(2) Did they use a high quality, accurate probe controller to maintain the dilution ratio ? (3) Molecular weight differences between cal and stack gas must be addressed since errors introduced in	Ves / No
the DR and measurement bias?	1637110
The Bit and medeatement state	
Sample Collection (8.4, 7E)	(Yes)No
Was the probe purged for 2XRT, traversing, maintaining sampling rate and DR?	
Was at least one valid point per minute recorded with a minimum point sampling time of 2XRT at the first	
point, for a minimum, with longer periods helping with temporal variation but subsequent points not required	Ves No
to be at 2XRT?	Yes"/ No
Single or multi-hole probe? Sampling rate maintained +/- 10 %?	
Book Burn Suntam Bios Chaele and Briff Assessment (C. 5. 75)	Yes / No
Post-Run System Bias Check and Drift Assessment (8.5, 7E)	Yes / No
Did they run, and pass, a 2-pt SCE check, no adjustments, after each run ? If failed, did they diagnosis and fix the problem, pass a 3-pt & 2-pt SB ?	Yes / No
Did they pass drift	163/110
NOTE: gases can be injected in any order	
Tre Fill gasso our so injusted in any stadi	
Quality Control (9.0, 7E)	Yes / No
Did they meet the mandatory requirements of The SUMMARY TABLE OF QA/QC, page 296?	Yes / No

Observer:	Scott Postma	Testing Firm:	
Company:	A. B. C. C.	 Team Leader:	
Location:		Phone Number::	
Source:	RTO	= 11 == 1	
	We by the second		

METHOD 25A OBSERVATION CHECKLIST

(Refer to the Instrumental Methods Datasheet)

	a sen e on ear servicion Many y r
Run Number:1 Analyzer ID:VIG 20/2 with 2	Run Number: 2 Analyzer ID: VIG 20/2 with 2
channels and VIG	channels and VIG
Analyzer Make: GC with FID analyzer	Analyzer Make: GC analyzer with FID
Analyzer Manufacturer: <u>VIG/JUM/Teledyne</u> .	Analyzer Manufacturer: VIG/JUM/Teledyne .
Analyzer Model: Model	Analyzer Model: Model
Test Location:	Test Location:
Test Date:	Test Date:
(Calibration)	(Calibration)
Calibration gas: (CH4/C3H8/other) Protocol #1 calibration gas? Yes / No	Calibration gas: (CH4/C3H8/other) Protocol #1 calibration gas? Yes / No
Protocol #1 calibration gas? Yes / No	Protocol #1 calibration gas? Yes / No
Protocol documents available?Yes / No	Protocol documents available?Yes / No
Documents current? Yes / No	Documents current? Yes / No
G1 certified? Yes / No	G1 certified? Yes / No
Expiration date?	Expiration date?
NOTES: Ranges used:	NOTES: Ranges used: .
	<u> </u>
	STREET VICTOR OF THE TOTAL OF THE STREET
LOW RANGE (span = 100 ppm)	LOW RANGE (span = 100 ppm)
Low range 25 to 35 % of span? Yes/no , conc.= .	Low range 25 to 35 % of span? Yes/no , conc.=
Mid range 45 to 55 % of span? Yes/no, conc.=	Mid range 45 to 55 % of span? Yes/no , conc.=
High range 80 to 90 % of span? Yes/no, conc.=	High range 80 to 90 % of span? Yes/no, conc.=
MID RANGE (span = 500 ppm)	MID RANGE (span = 500 ppm)
Low range 25 to 35 % of span? Yes/no_, conc.=	Low range 25 to 35 % of span? Yes/no , conc.=
Mid range 45 to 55 % of span? <u>Yes/no</u> , conc.=	Mid range 45 to 55 % of span? <u>Yes/no</u> , conc.=
High range 80 to 90 % of span? <u>Yes/no</u> , conc.=	High range 80 to 90 % of span? Yes/no, conc.=
HIGH RANGE (span = 10,000 ppm)	HIGH RANGE (span = 10,000 ppm)
Low range 25 to 35 % of span? Yes/no_, conc.=	Low range 25 to 35 % of span? Yes/no_, conc.=
Mid range 45 to 55 % of span? <u>Yes/no</u> , conc.=	Mid range 45 to 55 % of span? Yes/no , conc.= .
High range 80 to 90 % of span? <u>Yes/no</u> , conc.=	High range 80 to 90 % of span? <u>Yes/no</u> , conc.=
Gos stroom elkenos, elkenos, elkenos?	Goodfrom alkanos alkanos alkanos?
Gas stream alkanes, alkenes, alkynes? YES/No Any other gases expected in stream? YES/No	Gas stream alkanes, alkenes, alkynes? YES/No Any other gases expected in stream? YES/No
Specific Coase: Aminos suggested	Any other gases expected in stream?
Specific Gases: Amines, oxygenates	Specific Gases: Amines, oxygenates
Were Response Factors used in the calculations to	Were Response Factors used in the calculations to
proportion to a VOC mass? Yes YES/No	Proportion to a VOC mass? Yes YES/NO
Moisture can diminish the response of FIDs.	Moisture can diminish the response of FIDs.
Is moisture less than 10% in the stream? 1.4% Yes/No	Is moisture less than 10% in the stream? 1.2% Yes/No
Type of bag: tedlar / mylar / other (specify)	Type of bag: tedlar / mylar / other (specify)
Was the bag leak checked before use? Yes / No	Was the bag leak checked before use? Yes / No
Was the sample line purged with effluent? Yes / No	Was the sample line purged with effluent? Yes / No
Is the bag shielded from UV light? Yes / No	Is the bag shielded from UV light? Yes / No

,	Yes / No	Are the target VOCs non-polar?	res / No
	Yes / No		Yes / No
Recovery study not required for this test.		Recovery study not required for this test.	aguará .
Is the Span 1.5-2.5 times the conc./permit limit?		Is the Span 1.5-2.5 times the conc./permit limit?	
Correlation of span to 1.5 to 2.5 times the emission		Correlation of span to 1.5 to 2.5 times the emission	_
standard not necessary for a destruction and rem	<u>iovai</u>	standard not necessary for a destruction and rem	<u>oval</u>
efficiency (DRE) test.		efficiency (DRE) test.	
(M25A Quality Assurance)		(M25A Quality Assurance)	
Calibration Error, for each gas, less		Calibration Error, for each gas, less	
than (<) ±5% of caffbration Gas Value?	Yes/No	than (<) ±5% of calibration Gas Value?	Yes/No
Zero Drift less than (<) ±3% of the span value?	Yes/No	Zero Drift less than (<) ±3% of the span value?	Yes/No
Calibration Drift less than (<) ±3% of the span value?	Yes/No	Calibration Drift less than (<) ±3% of the span value?	V/N-
Is the average Response Time <2 minutes?	Yes/No	Is the average Response Time <2 minutes?	Yes/No Yes/No
Was the measured gas concentration	103/110	Was the measured gas concentration	165/110
adjusted for the drift as method 6C?	Yes/No	adjusted for the drift as method 6C?	Yes/No
,		s	
(Other)		(Other)	
Is the entire sampling system properly heated?	Yes/No	Is the entire sampling system properly heated?	Yes/No
Is the entire sampling system insulated?	Yes/No	Is the entire sampling system insulated?	Yes/No
Is the sample line temperature being recorded?	Yes/No	Is the sample line temperature being recorded?	Yes/No
Is an appropriate gas being used for bias checks		Is an appropriate gas being used for bias checks?	Yes/No
Is the testing in accordance with the protocol?	Yes/No	Is the testing in accordance with the protocol?	Yes/No
Were all conditions in protocol met?	Yes/No	Were all conditions in protocol met?	Yes/No

ii you answered	NO to any question, there may be a problem	em with the testing that could invalidate the test run!
Comments:	LALM LA STATE IN	to a little and a state of
-		

- mz6 no sodunthiosulfor - Not Checking temperers smin on 26 as Required >120's R!! 1205-1435 temperers smin on 26 as Required >120's R2: 1530-

ATTACHMENT 8

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY CONFIDENTIALITY NOTICE

Facility Name			
Facility Address Towa CAKDALE CAMPUS			
Facility Address 2320 Cross Park Road Corganille IA Inspector (print)	52241		
Inspector (print)			
Scott Postme			
U.S. EPA, Region VII, 901 N. 5th St., Kansas City, KS 66101	Date 26/13		
The United States Environmental Protection Agency (EPA) is obligated, under the Freedom of Information Act, to release information collected during inspections to persons who submit requests for that information. The Freedom of Information Act does, however, have provisions that allow EPA to withhold certain confidential business information from public disclosure. To claim protection for information gathered during this inspection you must request that the information be held CONFIDENTIAL and substantiate your claim in writing by demonstrating that the information meets the requirements in 40 CFR 2, Subpart B. The following criteria in Subpart B must be met:			
1. Your company has taken measures to protect the confidentiality of the informato take such measures.	tion, and it intends to continue		
2. No statute specifically requires disclosure of the information.			
3. Disclosure of the information would cause substantial harm to your company's	s competitive position.		
Information that you claim confidential will be held as such pending a determination of	applicability by EPA.		
I have received this Notice and <u>DO NOT</u> want to make a claim of confidenti	ality at this time.		
Facility Representative Provided Notice (print) Signature	/Date		
THEVE KOMENSMENTER SPARKETIENS	RAR 3/26/13		
I have received this Notice and <u>DO</u> want to make a claim of confidentiality.			
Facility Representative Provided Notice (print) Signature	/Date		
Information for which confidential treatment is requested;			
NONE			
(Rev: 11/15/99)			

5//9=/2	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY CONFIDENTIALITY NOTICE

Facility Name OAKDALE CAMPUS, UNIVERSITY	ME Taux
racinty Address	CI JOWA
OFFICE. 207 W. BURLENGTON, IOWA CETY, ION	UA 522472
Inspector (print)	
Scott Postma	
U.S. EPA, Region VII, 901 N. 5th St., Kansas City, KS 66101	Date 7/23/13
The United States Environmental Protection Agency (EPA) is obligated, under the Freed to release information collected during inspections to persons who submit requests for of Information Act does, however, have provisions that allow EPA to withhold certain conformation from public disclosure. To claim protection for information gathered during request that the information be held CONFIDENTIAL and substantiate your claim in with the information meets the requirements in 40 CFR 2, Subpart B. The following criteria in Your company has taken measures to protect the confidentiality of the information take such measures.	lom of Information Act, that information. The Freedom onfidential business of this inspection you must riting by demonstrating that in Subpart B must be met:
2. No statute specifically requires disclosure of the information.	
3. Disclosure of the information would cause substantial harm to your company's	s competitive position.
Information that you claim confidential will be held as such pending a determination of	applicability by EPA.
I have received this Notice and <u>DO NOT</u> want to make a claim of confidenti	ality at this time.
Facility Representative Provided Notice (print) Signature	
Mark Maxwell Marks	Maxwell /07-24-13
I have received this Notice and <u>DO</u> want to make a claim of confidentiality.	
Facility Representative Provided Notice (print) Signature	/Date
Information for which confidential treatment is accounted.	
Information for which confidential treatment is requested;	
INGIN	
/Par 11 /15 /00\	
(Rev: 11/15/99)	

A MARIE OF THE STREET OF THE PROPERTY OF THE P

The potent forms of the po		
The potent forms of the po		
Important (print) Les FLA, Region VII vill E. th. M. A. a. a. a. the solignist angles the freezions in manufactor. It is a state of the solignist angles the freezions in manufactor. It is a state of the solignist angles at a compression of the solignist angles of the compression of the solignist angles of the solignist angles of the compression of the solignist and solignist angles of the compression of the solignist and the solignist angles and the solignist and the solignist and the solignist angles and the solignist and the solignist angles and the solignist angles and the solignist and the solignist angles and the solignist angles and the solignist and the solignist angles ang		
The Mainted Petitis Expression of the Mainted Square of Mainted Petitis Expression in the Product of Mainted Petitis Expression of the Mainted Square of Mainted Mainted Mainted Mainted Square of Mainted Square of Mainted Square of Mainted Mainted Square of Mainted		
The FPA Region VIA 201 BC 30. Secure Company (PA) is obligated under the Besselon of Internation of the Company of PA) is obligated under the Besselon of Internation of the Company of PA of the Internation of the Company of the Com		
The FPA Region VIA 201 BC 30. Secure Company (PA) is obligated under the Besselon of Internation of the Company of PA) is obligated under the Besselon of Internation of the Company of PA of the Internation of the Company of the Com		
For Philad States Environments, "constitue square," abby as obligated, under the fire-atom to intermediate following neighbors by persons designed against a square and the state of the square of the	2/m/201 /r	
For Philad States Environments, "constitue square," abby as obligated, under the fire-atom to intermediate following neighbors by persons designed against a square and the state of the square of the		
Superior the mode the equiver-site of the Condense of the condense of the information and mankaged to continue. In the continue questions the makes of the condense of the information and mankaged to continue. Endougle of the continue of the continue discourse of the continue. Endougle of the continue of the information will approximate the continue of the conti		
	needs the equivers of \$2,000 to \$2. No. (allowing others as subpart Bornet by most by	

ATTACHMENT 9

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RECEIPT FOR DOCUMENTS AND SAMPLES

Facility Name
Facility Address OAKDALE CAMPUS
2320 CROSSPARY ROAD, CORELVEUE IA 5224)
Documents Collected? YES (list below) NO
Samples Collected? YES (list below) NO Split Samples: YES NO
Documents/Samples were: 1)Received no charge 2)Borrowed 3)Purchased
Amount Paid: \$ Method: Cash Voucher To Be Billed
The documents and samples described below were collected in connection with the administration and enforcement of the applicable statute under which the information is obtained.
Receipt for the document(s) and/or sample(s) described below is hereby acknowledged:
None
Facility Representative (print) Signature/Date
STEVE KOTTENSTETE SPENE STEWE 8/26/13
STEVE KOTTENSTETTE State GRENSTETTE 3/26/13 Inspector (print) Signature/Date Signature/Date 3/26/13
U.S. EPA, Region VII, 901 N. 5th Street, Kansas City, KS 66101
(rev: 1/20/93)

PRITTED STATES THE DOCUMENTS AND SHAPIES

Unrugaray of Isua, parcaus Compus
2420 CROSSPAN ROAD CONGLUENTE IA 52241

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RECEIPT FOR DOCUMENTS AND SAMPLES

BNIVESITY OF TOWN, OAKDALE CAMPUS
Facility Address MATH OFFICE FOR ENVIRON/PRANT 207 W BURLINGTON, IOWA CITY IOWA 52242
Documents Collected? YES(list below) NO
Samples Collected? YES (list below) NO Split Samples: YES NO
Documents/Samples were: 1)Received no charge 2)Borrowed 3)Purchased
Amount Paid: \$ Method: Cash Voucher To Be Billed
The documents and samples described below were collected in connection with the administration and enforcement of the applicable statute under which the information is obtained.
Receipt for the document(s) and/or sample(s) described below is hereby acknowledged:
Facility Representative (print) Signature/Date
Mark Maxwell Mark Maxwell 107-23-13
Inspector (print) Signature/Date Switt Postma 7/23/13
U.S. EPA, Region VII, 901 N. 5th Street, Kansas City, KS 65101
(rev:1/20/93)

UNITED STATES SAVIDONMENTAL PROTECTION ACENCY

SPSS AND PRODUCTION SERVICE	
Demnistration of the control of the	
a and sampled described letter some collected to consection with castion and enforcement of the applicable statute under which the a botalond.	
AVAGE ON LAND (8) TOWNSON BILLS	
Forma / watherstone 7/2/13	

DOCUMENT CONTROL CHECK SHEET

				Med	ia		
				Air	RCRA	Water	Other
Activity Number		_					
Facility ID Number <u>IA-2090</u>	D000 4	_					
Facility Name and Address	er al ka	of Toma					
	PALE CA						
The following documents pertaining	to this ac	ctivity are con	ntained in the	package	:		
Document			3 7	D.T.	BT A		
Document			Yes	<u>No</u>	<u>NA</u>		
Final Report with attachments	_	Pages	(')	()	()		
Field sheets	=	2 Pages	(*)	()	()		
Chain of Custody Field notes	-	Pages) ()	()		
	-	Pages			()		
Analytical data sheets	- \ - \	Pages	()) ()	()		1
Photographic negatives (if applicable		D) ()	()		
Photographs (not included in this rep	oort)	Pages) ()	()		
Pre-inspection documents	_	Pages	(V)) ()	()		
Other documents (list below)		- D					
Note		9 Pages					
		Pages					
		Pages					
		Pages					
(Note: If additional space is needed	to list spo	ecific docume	ents, utilize r	everse si	de)		
<u>C</u>	<u>ERTIFI</u>	<u>CATION</u>					
I, the undersigned, certify that all of my possession have been listed abov statement was signed.	the docur e and we	nents pertain re included ir	ing to this ac this packag	tivity tha e at the ti	t were in	l	
	€1						20
	A 04::4	Leader's Sig	1 70			_	
	A CHVITY	Leager's Nio	nature and Li	iate			

Advanced Control in One System Particulate, SO2, HCI, & NOx

Advanced, low-density caramic filter systems are now capable of renowing particulate matter (PM), NO., 202, HCJ, dioxia, and even mercury in a single system. Particulate matter is removed to ultrahow levels (<2 mg/Nm¹, 0.001 grains/dect), while other positiants can be removed an experiment of the positiants can be removed an experiment of the positiant in the Ti-Mer UltraCat Catalyst filter system is a cost-effective solution to many difficult polition. control issues.

Ceramic filters

Ceramic filters, often called candles because of their solid tube shape, have been used in pollution control for decades.

fibers and are vacuum formed into shape. The contrast between types of ceramic filter elements is shown in Table 1. refractory grains such as alumina or sifcon carbide and pressed into the basic candle shape—a tube with a closed, rounded bottom and a flange at the top. The newer, low-density filters start as a stury of refractory The original high-density candle filters were manufactured from

Table 1

Contrast between types of ceramic filter elements Characterstics of high- and low-density ceramic filter elements	Contrast between types of ceramic filter elements cs of high- and low-density ceramic-filt	of 5 c-titer elements
Structure Density Filter Drag Porosity, % (inverse of	High density Granutar High High	Low density Fibrous Low Low
Tensuale strength Tensuale strength Fracture mechanism Thermal shock resistance Cost	High Low High	Low High Low

There are hundreds of applications of these types of filters in Europe, Japan, and Australe. The filter elements are made in various lengths, but it is the latest generation of 3-moter (10-ti) long filters, on the market since 1997, that make industrial applications practical. The filters are placed in a housing module similar to a baghouse (see Figure 1).

air pollution control Technology Leader

7ri-Mer Business Development Director, Advanced Technologies. Direct line: (801) 294-5422, or kevin.moss@tri-mer.com For more information, contact Kevin Moss,

catalyst filters.

Figure 1 Many filters placed in a single module.
Multiple modules are operated in parallel to handle
large volumetric flow rates (Multiple modules shown
in Figure 8).

low resistance to airflow, minimizing pressure drop and the number of elements required for a given flow rate. This high, open area also makes These lightweight ceramic filters solve many of prone to cracking and breakage from thermal shock and vibration. As shown in Figure 2, the fibers maintain a very high, open area for elements easy to clean using the standard reverse pulse jet techniques associated with the problems associated with "candle filters." While effective, the latter were brittle and fabric filter baghouses (see Table 2).

Ceramic filters must operate above the condensation temperature of the pollutants, or the particulate will not release from the filter Operating characteristics

Micrograph of composition

surface unless the temperature is raised and the material volatizes, thus cleaning the fiber. Table 3 shows typical operating temperatures for the certains fibers. The fibers are chemically inside the highly consision resistant, as would be expected from ceranic materials. Fibers are manufactured in two varieties, standard Ultra Temp filters and UltraCat

Table 2

Characteristics of low-density fibrous Outer diameter up to 150mm (6 in.) Length up to 3m (10 ft.) Self-supporting from integral flange Monolithic rigid tube Refractory fibers plus ergento and morganic binding agents About 80 - 90% About 0.3 - 0.4 g/cc Porosity Density Support

The catalyst filter is identical to the standard filter, except that it has nanobits of SCR catalyst embedded in the filter walls for NO, removal

and dioxin destruction.

The typical level of PM at the outlet of the ceramic filters is less than 0.001 grains/dscf (2.0 mg/Mm²). This is true even with very heavy inlet loadings of several thousand militgrams per cubic meter. PM is captived on the face of the filter and does not penetrate deeply into the filter body, thus allowing for repetitive and complete cleaning. This is an engineered feature of the filter surface. The filter does not blind, and only over five to ten years does the pressure drop very gradually increase to the point that fitters should be changed. Pressure drop for the new clean filter is approximately 6 inches w.g. Pressure drop can be lowered by adding more filter elements or footprint, and capital cost can be reduced by decreasing the filter count at the expense of fan horsepower.

methods, which send a pulse of compressed air down the center of the tube, can thoroughly clean the accumulated PM from the outer surface of the tube. Filters are cleaned on-line, with no need to isolate each The filter construction also means that standard reverse pulse jet

Typical filter life is 5 to 10 years. The filters are effective across the range of particle sizes, but are most often used when there is a large fraction of PM2.5 and submicron particulate and / or at high temperatures (see Table 4).

Table 3

Fifter name	for the ceramic filters Temperature range of operations	rations
UttraTemp	Particulate matter (PM)	300°F to 1650°F
UltraTemp Standard	PM + SO2, HCl. or other gases	300°F to 1200°F
UltraCat	PM + NOx. Dioxins also destroyed	350°F to 700°F
UltraCat	PM + NO _x (+Dloxins) + SO ₂ , HCl & other acid gases	350°F to 700°F

SO₂ and acid gas control
Both standard Ultra lomp and catalyst UltraCat filter systems feature an option for dry injection of calcium or sodium-based sorbents.

Figure 3. Standard filter system for control of particulate, SO., HCI, and other gases

chemical reaction of the sorbent with the acid gas creates a solid particle that is also captured on the filters alongside the unreacted sorbent and filter and at the filter cake that builds up on the surface of the filters. The sorbent particulate is easily captured along with its pollutant gas. The sorbent must be milled to small particle size to maximize surface area for maximum reactivity. The reaction occurs within the duct prior to the hjected in the duct, upstream of the filter modules, the additional the process particulate With sorbent injection, SO₁ removal is typically 90 parcent or higher, with removal efficiencies as high as 97 percent. HCI removal is typically 29 percent. The temperature range for effective removal is 300°F to 1200°F (See Figure 3).

Table 4

99.85 88.9 6 66 66'66 >99.8 Ceramic filters are most effective where there is a large fraction of PM2.5 and submicron particulate Outlet PM loading 0.0007 0.0003 <0.0004 <0.0004 0.0002 ₹ 15 0.8 5.16 0.24 0.44 3.5 0.38 11,800 550 1,000 8,000 870 Particle size 950 100 4.8 1.2 Diameter of median size particle Aluminum powder production Smokeless fuel production Secondary aluminum Zirconia production Nickel refining

sodium branbonate are produced and is mined exclusively in Wyoming When properly milled, trona can be used as a dry sorbent, no other Sodium bicarbonate (baking soda) and trona are typical sodium-based sorbents. Trona is the naturally occurring ore from which soda ash and processing required, and it is available throughout North America.

Figure 4. Ceramic fiber filler tube with embedded nano-catalysts

NO, and dioxin control

with nanobits of SCR catalyst embedded in the walls. The filter walls that contain the catalyst are about 34 inch (20 mm), as represented in Figure 4. Urea or ammonia is injected upstream of the filters. The catalyst For NO, or dioxin removal, UltraCat catalyst fitter elements are available embedded in the filters destroys NOx with up to 95 percent removal

Note the lower operating temperature required for high NO $_{\rm x}$ destruction 350°F to 400°F, compared to 600°F to 650°F for conventional SCR. Besides the need for high temperature, a common problem with traditional SCR is the catalyst becomes poisoned and ineffective. metals, and HCl. The catalyst used in the filters also has a proprietary formulation with a fraction of the conversion rate of SO₂ to SO₃ of traditional SCR catalysts. necessitating early replacement. Typical poisons are ordinary PM,

completely protected from blinding by particulate matter, since it is protected inside the filter itself (see Figure 5). PM removal, sorbent rijection for SO; (and other acid gases) and catalytic reduction can be The increased reactivity shown by the catalyst fitters at lower temperatures results, in part, from their micronized form. The diffusion restriction is eliminated, and, most significantly, the catalyst is almost ncorporated in a single system

It is important to note that operating temperature for high NO, removal must be kept at 350°F to 700°F to achieve NOx removal up to 95

For particulate removal only, the standard Ultra Temp ceramic filter can range of fabric bags. For applications with temperatures below 400°F that do not have temperature excursions or hot materials that pose a

Dioxins are also broken down by the catalyst. Optimum performance for dioxins is limited to an upper temperature of 480°F. Within a wide range, destruction efficiency is typically 97 to 99 percent.

SCR. Low-temperature NO $_{\rm A}$ removal capability opens a new direction in NO $_{\rm X}$ control for operators of a wide range of boilers, and other industrial is superior, in both performance and economics to having a separate pollution control device for each pollutant. Especially with NOx, in many Multi-pollutant capability creates a powerful, all-in-one-solution that circumstances there is insufficient temperature to operate traditions processes requiring NOx control (see Figure 6).

Mercury control

The ceramic filter systems are compatible with standard mercury removal techniques. Control of mercury is notoriously difficult, each instance is analyzed individually and customized solutions are engineered. A few general observations can be offered, however.

right conditions, 70 to 80 percent control can be achieved. The chemical composition of the pollutant gas plays a major role; hence, the difficulty of blanket statements. At higher temperatures, brominated PAC is mercury capture have also been achieved in applications with injected powdered trona. exceptionally low outlet levels. Just as the addition of dry sorbents for the removal of acid gases is effective, so is the addition of powdered required. According to the manufacturers of brominated products, temperatures of 500°F to 800°F are acceptable. Significant levels of less effective with temperature, topping out around 400°F. Under the activated carbon (PAC) for mercury. In general, regular PAC become The filters can handle very high particulate loads while maintaining

When would ceramic filters be the control technology

Figure 6 Control of PM SO, HCI NO, and dioxins

fre hazard to the bags (as can happen with biomasss boilers), or other special circumstances, the fabric bags are less costly than cosamic filters and would be equipment of choice, in borderine cases, the ceramic filters have a rnuch longer element fife and often prove to be the operate at temperatures up to 1650°F. This is far above the temperature In applications that require NOx removal, since fabric bags and ESP cannot control NOx, the UltraCat catalyst filters are preferable. Ceramic filters also replace electrostatic precipitators (ESPs) when there is a

Figure 8 Multiple modules are operated in parallel to handle large volumetric flow rates. With 3 or more modules, if a module needs to be serviced. the other modules are designed to temporarily operate at higher pressure with minimal change in performance.

significantly less sorbent and higher removal efficiency can be achieved on acid gas removal. As stated, fabric bags and ESP do not remove NOxcorrosion issues, and are roughly equivalent (or lower) in energy usage. Because of the formation of filter cake on the filter surface (which provides more exposure to the acid gases), filter systems consume

or dioxins, of course, so a second device (perhaps with temperature

addition which can be very expensive to operate) would be needed

need for very low PM levels, especially on applications with significant much higher inlet loadings, are not subject to the selective removal constraints of ESPs, have lower maintenance requirements and fewer

most cost-effective solution.

portions of PM2.5 and submicron particulate. The filters can handle

ollowing them. This adds a layer of cost and complexity. In contrast, the UkraCat catalyst filter can handle all the pollutants in a single device at

ower temperatures (see Figure 7).

Wodular design of the housing units allows filters to be configured to

Figure 7. Catalytic element performance

Boiler MACT compliance for coal, biomass, wood Metal smelting, mineral processing Chemical production Waste incineration Glass furnaces Waste pyrolysis

Product Collection/Recovery Titanium dioxide production Carbon black production **Eumed silica production** Catalyst manufacturing Air Pollution Control Cement production Foundry processes Energy production Platinum smelting Medical waste Fluxdized beds Soil cleaning Fire testing

> handle even large gas-flow vokumes. When large flow vokumes are treated, modules are put in parallel. The systems are designed so that a single module can be taken off kne if required, and the remaining designed into the fan) without interruption of process itself and with no

two or more modules continue to operate at a slightly higher pressure

appreciable change in emission control performance (see Figure 8).

The catalyst handles all the pollutants in a single

device at lower temperatures

Primary Applications

Many specialized high temperature applications

Less than 0.001 gr/dacf (Zmgmu) outlet particulate

Up to 95% 50₂ removal Up to 97% HCI removal **Up to 95% NO**× гетоvа

-97-99% Dinkin ren

n of Injection of Ja ursa,NH3

support air + suppor

More Applications

Activated carbon production Metal powder production

Lightweight ceramic filters have been used for the last 10 years by the U.S. miktary at munitions-destruction facilities in Indiana, Utah, and Oktahoma. There are hundreds of operating ceramic filter applications

throughout the world. With a rapidly growing commercial base in the US, the Ultar lange and UltarCate filter systems provide a way to master many of the difficult stutistions faced by owners, operations, and consultants in meeting the increasingly strict regulations regarding air

pollution control.

engineered for easy installation and maintenance. Fifter elements are manufactured in various sizes, the largest of which is ten feet long and six inches in diameter, including an integral mounting flange. Operation of the UltraTemp filtration system
Tri-Mer's UltraTemp and UltraCet Hot Gas Filter systems use baghouse
configurations with a reverse pulse-jet cleaning action. The filters are sealing mechanism is easy to access, and the design has been back-flushed with air, inert gas, or other appropriate gases. A reliable

 Pressure drop across the system is approximately 6-8 inches w.g. - lower than the total energy usage of multi-step systems.

Operation of Filters

The UltraTemp and UltraCat Filter systems are efficient, cost-effactive approaches for hot gas filtration. With over 480 applications worldwide that us the fibrous ceramic filter elements, this proven technology is now commercially available throughout the US, with full technical and start-up support.

in Michigan and sized for convenient shipping in the field the sections are lifted by crane and bolled together Filters are then installed by Tri-Mer personnel. The top section is collection hopper with internal screw conveyor to rotary or all weather middle section is filters, bottom section is the a walk-in plenum for easy clean maintenance access in slide gate valve discharge Housing modules are manufactured at the Tri-Mer factory

Tri-Mer Corporation, a technology leader in air pollution control, provides turnitey engineering, manufacturing, installation, and service for the Ultra Temp and UltraCat filter systems through its Michigan factory

Technology Leader air pollution control

For more information, contact Kevin Moss,
Tri-Mer Business Development Director, Advanced Technologies,
Direct fine: (801) 294-5422, or kevin.moss@tri-mer.com

Jim Robertson - Hursti Richaen NO2 + NHOH No + - water in So-ple lines - APCO paper 60-140 ppm Nox (MAX) 265/202 \$6,3A 6N 7/23 15,000#/n 4.13 # /n/ 11-12 Kth, 1.2 8H2D, 11.3 "AP 420 35 Boiler Denord Speed of Scrawfor wood Price 50% MAX ID For MAXED @1009, ON Drive Down of BH

there per DERECTOR

Will Syngas be bursed during hest?

Combined Stark

Steve 126 How statte

MARII MARIE MARIEN

Metal Dim Robertso J

RICH Sollars

Brandon Schuler

Abe Dickinson

MARK 631-1950

UOFT